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Objectives of this course

Introduction to the mathematical model of quantum computing

Qubits, quantum registers, and unitary transformations

Quantum gate arrays

The most important quantum algorithms, in particular quantum Fourier
transformation and Shor’s factoring algorithm.

Prerequisites: complex numbers, linear algebra, basics of the theory of
computation

We shall not cover the physics of quantum computing and the question of how
one could possibly build a quantum computer.
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Unit 1

A brief history (well, actually two)

An experiment

Postulates of Quantum Mechanics

Hilbert spaces, unitary transformations, tensor products, and all that

Qubits, quantum registers, and measurements

Entanglement

Sorry, no cloning!
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A completely different story

Flying machines have been a dream of mankind for many centuries.

Leonardo da Vinci (1452-1519): Several proposals for the construction of
flying machines.

George Cayley (1773-1857): First rigorous study of the physics of flight and
theoretical design of a fixed-wing, self-propelled aircraft.

But is it really possible to actually build flying machines?
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Scepticism

I can state flatly that heavier than air flying machines are impossible.
Lord Kelvin, 1895

It is apparent to me that the possibilities of the aeroplane, which two or three
years ago were thought to hold the solution to the [flying machine] problem,
have been exhausted, and that we must turn elsewhere.

Thomas Edison, 1895

Flight by machines heavier than air is unpractical and insignificant, if not
utterly impossible.

Simon Newcomb, 1902

It is complete nonsense to believe flying machines will ever work.
Stanley Mosley, 1905
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A breakthrough: The Wright Flyer

On 17th December 1903, at Kitty Hawk, North Carolina, the Wright brothers,
Orville and Wilbur, made what is viewed today as the first controlled,
sustained flights of a self-powered, heavier-than-air aircraft, the Wright Flyer.
The longest of them took 59 seconds and covered 260 metres.

“ It was not the first vehicle to fly,
it did not solve any pressing transportation problem,
it did not herald the widespread adoption of planes,
it did not mark the end of other modes of transportation.

But it has shown a new operational regime: the self-propelled flight of an
aircraft that is heavier than air. This event has its place in history because of
what it represents, not what it practically accomplished.”

Wiliam D. Oliver: Quantum computing takes flight, Nature, October 2019
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A brief history of quantum computing

1980/82: Yuri Manin and, independently, Richard Feynman make the point
that certain physical phenomena cannot be efficiently simulated by a classical
computer.

. . . because nature isn’t classical, dammit, and if you want to make a
simulation of nature, you’d better make it quantum mechanical, and
by golly it’s a wonderful problem, because it doesn’t look so easy.

Richard P. Feyman, 1982

Speculation about the possibility to make use of quantum mechanical
phenomena, such as superposition, entanglement and interference, to build
quantum computers to accomplish tasks that would be impossible or
prohibitively expensive for classical computers.
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A brief history of quantum computing (2): Models and
algorithms

1985 -1993: Deutsch, Bernstein-Varizani, and others develop theoretical
models for quantum computing such as Quantum Turing Machines and
Quantum Gate Arrays.

Quantum complexity classes

Simple quantum algorithms indicate that certain problems can be solved much
more efficiently by quantum computers than classical ones. However, these
were artificial problems without practical value.

1994: Peter Shor presents a polynomial-time quantum algorithm for the
integer factorization problem.

Thus, quantum computers, if they can indeed be built, could break common
and widely used encryption schemes such as RSA.
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A brief history of quantum computing (3): A challenge

It is still unclear, whether sufficiently large and stable quantum computers can
actually be built.

Quantum supremacy: A challenge formulated by Preskill (2012). Show that

. . . well controlled quantum systems can perform tasks surpassing
what can be done in the classical world. One way to achieve such
"quantum supremacy" would be to run an algorithm on a quantum
computer which solves a problem with a super-polynomial speedup
relative to classical computers . . .
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A brief history of quantum computing (4): Scepticism

Quantum computing is all the rage [. . . ] Most commentators forget, or just
gloss over, the fact that people have been working on quantum computing for
decades — and without any practical results to show for it.

Mikhail Dyakonov, 2018

Noisy quantum systems will not allow building quantum error-correcting
codes needed for quantum computation.

Gil Kalai, 2019

The quality of qubits and gates cannot be improved beyond a certain threshold
that is quite close to the best currently existing qubits and gates.

Gil Kalai, 2019

Erich Grädel Quantum Computing SS 2020



A brief history of quantum computing (5): More scepticism

I believe that our universe is not a miraculous one, allowing exponential
speed-ups over the natural model of computation.

Oded Goldreich, 2004

In light of all this, it’s natural to wonder: When will useful quantum
computers be constructed? The most optimistic experts estimate it will take 5
to 10 years. More cautious ones predict 20 to 30 years. (Similar predictions
have been voiced, by the way, for the last 20 years.) I belong to a tiny
minority that answers: Not in the foreseeable future.

Mikhail Dyakonov, 2018
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A brief history of quantum computing (6): A breakthrough ?

2019: A team of researchers, led by the Google AI Quantum Group, reports
on an experiment claimed to establish quantum supremacy.

Sycamore, a quantum processor with 53 qubits and 86 links between qubits,
performed a task related to random number generating: sampling the output
of a pseudo-random quantum circuit.

While Sycamore sampled the solutions in 200 seconds, classical sampling at
the same fidelity is claimed to take 10.000 years, and full verification would
take several million years.

It is not universally accepted that the experiment really establishes quantum
supremacy, but some researchers see it as milestone comparable to the Wright
brothers’ first flights.

Wiliam D. Oliver: Quantum computing takes flight, Nature, October 2019
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A simple experiment
Photons are the only particles we can directly observe. Illustrate some aspects
of quantum mechanics through polarization of photons.

Equipment: A powerful light source and three polarisation filters, which
polarise light horizontally (→), vertically (↑), and diagonally (↗)

Observations:

If only the horizontal filter (→) is put in front of the light source, 50% of
light passes through.

If the vertical polarisation filter (↑) is put in front of the horizontal filter,
50% of light passes through the first filter and the remaining light is
completely blocked by the second filter.

If the diagonal filter (↗) is put between (→) and (↑), from the light
emitted by the source, 50% passes through the first filter, 25% passes
through the first two filters, and 12.5% passes through all three filters.
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Explanation

Describe the polarisation state of a photon by |ϕ〉 := α|↑〉+β |→〉 in a
two-dimensional vector space with basis {|↑〉, |→〉}.

The direction of the vector is all that matters: consider unit vectors with
|α|2 + |β |2 = 1.

Instead of the basis {|↑〉, |→〉}, we could also take {|↗〉, |↘〉} or any other
pair of orthogonal unit vectors.

Measurement of a state |ϕ〉 wrt. basis {|↑〉, |→〉}:

Projection of |ϕ〉= α|↑〉+β |→〉 to either |↑〉 (with probability |α|2) or to
|→〉 (with probability |β |2).

After the measurement, the state |ϕ〉 is destroyed: it has been transformed into
one of the basic states |↑〉 or |→〉. There is no way to gain back |ϕ〉, and each
successive measurement gives the same result as the first one.
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Explanation

A filter with angle ϑ has basis {sinϑ |↑〉+ cosϑ |→〉,cosϑ |↑〉− sinϑ |→〉}.

The horizontal and vertical filters have {|↑〉, |→〉}, whereas the diagonal filter
(↗) has basis {|↗〉, |↘〉}=

{
1√
2
(|↑〉+ |→〉), 1√

2
(|↑〉− |→〉)

}
.

The photons that, after measurement, correspond to the polarisation, pass
through the filter; the others are reflected.

Filter (→) projects 50% of the photons to |→〉 and lets them pass; the other
50% are projected to |↑〉 and reflected. Filter (↑) reflects all photons projected
to |→〉. Hence, no light passes if filter (↑) if it is put behind filter (→).

Filter (↗) projects a photon in state |→〉= 1√
2
|↗〉− 1√

2
|↘〉 with

probability 1
2 to |↗〉. If filter (↗) is put between filters (→) and (↑), then

25% of the photons pass through the first two filters and are then in state |↗〉.
Since |↗〉= 1√

2
|→〉+ 1√

2
|↑〉, half of these are projected by (↑) to |↑〉 and pass.
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Postulates of Quantum Mechanics

Four postulates of quantum mechanics for describing physical systems:

States. A state is a complete description of a physical system at a given time.
It is described by a unit vector in a Hilbert space.

Compositions. The state space of a composite system is the tensor product of
the state spaces of its components.

Dynamics. A closed physical system evolves by unitary transformations.

Measurements. A measurement with a set M of possible outcomes is given
by a collection {Pm : m ∈M} of linear projection operators. Measurements are
probabilistic, outcome m appears with a probability p(m). A measurement of
a state |ψ〉 with outcome m projects the state to 1√

p(m)
Pm|ψ〉.

We explain the meaning of the postulates in the context of quantum computing
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Hilbert spaces

A Hilbert space H is a vector space over the field C of complex numbers, with
inner product

〈 · | · 〉 : H×H→ C, with

- 〈ψ |ϕ〉= 〈ϕ |ψ〉∗

(for a complex number z = a+ ib, its conjugate is z∗ = a− ib).
- 〈ψ |ψ〉 ≥ 0 (note that 〈ψ |ψ〉 ∈R) and 〈ψ |ψ〉= 0 if, and only if, |ψ〉= 0.
- 〈ψ |αϕ1 +βϕ2〉= α〈ψ |ϕ1〉+β 〈ψ |ϕ2〉.

Note that ‖|ψ〉‖ :=
√
〈ψ |ψ〉 defines a norm on H.

For infinite dimensional Hilbert spaces (not used in this course), it is further
required that H is complete (with respect to ‖·‖), i.e. that any Cauchy
sequence has a limit.
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Dual vectors and orthonormal basis

In quantum mechanics, one uses Dirac notation |ψ〉 (read “ket ψ”) for
vectors. The zero vector is 0 (not |0〉, which might be a different vector).

For every vector |ψ〉 ∈ H, its dual vector is the linear function

〈ψ| : H −→ C (read “bra ψ”), with
|ϕ〉 7−→ 〈ψ |ϕ〉.

An orthonormal basis of a Hilbert space H is a basis {|e1〉, . . . , |en〉} such that

〈ei | e j〉=

{
1 if i = j,

0 if i 6= j,

In particular, ‖|ei〉‖= 1 for all i = 1, . . . ,n.
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Outer product

With a pair of vectors |ψ〉 ∈ H1 and |ϕ〉 ∈ H2, we associate the linear operator
|ψ〉〈ϕ| : H2→ H1, called the outer product of |ψ〉 and |ϕ〉,

(|ψ〉〈ϕ|) : |ϕ ′〉 7−→ 〈ϕ |ϕ ′〉|ψ〉

|ψ〉〈ψ| is the projection on the one-dimensional space generated by |ψ〉

Every linear operator can be written as a linear combination of outer products.
Given a basis {|1〉, . . . , |n〉}, we write

A = ∑
i, j

ai j|i〉〈 j|
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Eigenvalues

An eigenvector of a linear operator A : H→ H is a non-zero vector |ψ〉 with

A|ψ〉= λ |ψ〉, for some λ ∈ C.

λ ist the eigenvalue corresponding to |ψ〉.

A is diagonalisable if A = ∑i λi|ψi〉〈ψi| for an orthonormal basis of
eigenvectors |ψi〉 with corresponding eigenvalues λi.

In this basis, we can the write A as a matrixλ1
. . .

λn
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Adjoints

With any linear operator A : H→H, we associate its adjoint A† which satisfies

〈ϕ |Aψ〉= 〈A†
ϕ |ψ〉.

In terms of matrices, A† = (A∗)T (the conjugate transposed matrix to A)

Example:

(
1+ i 1− i
−1 1

)†

=

(
1− i −1
1+ i 1

)
Caution: The notation A† is common in quantum mechanics. From
mathematics, you may be used to a different notation such as A∗ (used here
for the conjugate of A).
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Normal, Hermitian and unitary operators

A linear operator A : H→ H is normal if AA† = A†A. This is necessary and
sufficient for A being diagonalisable.

A : H→ H is Hermitian if A† = A. A Hermitian operator is normal, hence
diagonalisable and has only real eigenvalues.

A linear operator A : H→ H is unitary if AA† = A†A = I

Unitary operators are diagonalisable, invertible, and preserve inner products:
〈Aϕ |Aψ〉= 〈ϕ |ψ〉, and hence ‖A|ψ〉‖= ‖|ψ〉‖.

The eigenvalues of a unitary operator have the form λ = eiϕ
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Qubits

Bit: Elementary building block for the state space of a classical
computational system, with two possible states: 0 and 1

Quantum bit or qubit: Superposition of these states. Qubits are the
elementary units for quantum computation.

Fix orthonormal basis vectors |0〉 and |1〉 of a two-dimensional
Hilbert space H2.

A qubit is a unit vector |ψ〉= α|0〉+β |1〉 in H2, with |α|2 + |β |2 = 1.

Erich Grädel Quantum Computing SS 2020



Measurement of a qubit

Any measurement (with the standard basis) of |ψ〉= α|0〉+β |1〉 results with
probability |α|2 in |0〉, and with probability |β |2 in |1〉.

The associated projection operators are P0 = |0〉〈0| and P1 = |1〉〈1|.

After the measurement, the qubit is in the measured state |0〉 or |1〉.

Any repeated measurement leads to the same result. Although a qubit can
take infinitely (in fact, uncountably) many values, one can extract from it only
one bit of classical information.

Measurement is a probabilistic process
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n-Qubit Systems (Quantum Registers)

A classical system with n bits has 2n states:

00 · · ·00, 00 · · ·01, . . . 11 · · ·10, 11 · · ·11

A n-qubit system has 2n base states

|00 · · ·00〉, |00 · · ·01〉, . . . |11 · · ·10〉, |11 · · ·11〉

and its state can be any superposition
α0|00 · · ·0〉+α1|00 · · ·1〉+ · · ·+α2n−1|11 · · ·1〉 with ∑i<2n |αi|2 = 1

The state space of an n-qubit system is the 2n-dimensional Hilbert space

H2n
= H2⊗H2⊗·· ·⊗H2
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Composition classically and quantum mechanically

Classical physics: Combining a state space V with basis {|v1〉, . . . , |vm〉} and a
state space W with basis {|w1〉, . . . , |wn〉} produces a product space V ×W ,
with basis {|v1〉, . . . , |vm〉, |w1〉, . . . , |wm〉} and dim(V ×W ) = dimV +dimW .

Quantum mechanics: Combining V and W as above results in the product
space V ⊗W with basis {|vi〉⊗ |w j〉 : i = 1, . . . ,m, j = 1, . . .n} and
dim(V ⊗W ) = dimV ·dimW

The dimension grows exponentially with the number of components

Notation: |vw〉 or |v〉|w〉 for |v〉⊗ |w〉 and
|v1v2 · · ·vn〉 for |v1〉⊗ |v2〉⊗ · · ·⊗ |vn〉
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Measuring one qubit

If we measure the first qubit of an n-qubit state

|ψ〉= ∑
v∈{0,1}n

αv|v〉

we obtain |0〉 with probability p = ∑w∈{0,1}n−1 |α0w|2, with projection to

|0〉⊗ 1
√

p ∑
w∈{0,1}n−1

α0w|w〉,

and we get |1〉 with probability q = ∑w∈{0,1}n−1 |α1w|2, with projection to

|1〉⊗ 1
√

q ∑
w∈{0,1}n−1

α1w|w〉.
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Measurement in general

Any measurement is associated with a set M of possible outcomes, and with
linear projection operators {Pm : m ∈M} with ∑m∈M P†

mPm = I.

A measurement of a state |ψ〉 produces outcome m with probability

p(m) = 〈ψ |P†
mPm|ψ〉

and projects the the state to 1√
p(m)

Pm|ψ〉. Note that

∑
m∈M

p(m) = ∑
m∈M
〈ψ |P†

mPm|ψ〉= 〈ψ | I|ψ〉= 1.
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Entangled states

For every pair |ψ〉= ∑i ai|vi〉 ∈V and |ϕ〉= ∑ j b j|w j〉 ∈W , we have in
V ⊗W the vector |ψ〉⊗ |ϕ〉= ∑i, j aib j(|vi〉⊗ |w j〉)

But: Not every vector |ϑ〉 ∈V ⊗W can be written as a product
|ϑ〉= |ψ〉⊗ |ϕ〉 with |ψ〉 ∈V and |ϕ〉 ∈W !

Example: For |ψ〉= 1√
2
(|00〉+ |11〉) ∈ H2⊗H2 there are no |ϕ1〉, |ϕ2〉 ∈ H2

with |ψ〉= |ϕ1〉⊗ |ϕ2〉.

Otherwise,
|ψ〉= (a|0〉+b|1〉)⊗ (c|0〉+d|1〉) = ac|00〉+ad|01〉+bc|01〉+bd|11〉.
Hence ad = bc = 0 which implies that, also, either ac = 0 or bd = 0.
Contradiction!

Such non-decomposable states are called entangled.
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Measuring entangled states

We compare the two (2 qubit) states

1√
2
(|00〉+ |01〉) and

1√
2
(|00〉+ |11〉)

Measuring the first qubit for the left, decomposable, state gives |0〉 with
probability 1, and the state remains unchanged.

However, measuring the first qubit in the right, entangled, state (called an
EPR pair), gives |0〉 or |1〉 with equal probability 1/2, and after this, the
second qubit is also determined.
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Dynamics

The evolution of a closed (unmeasured) quantum system is described by the
Schrödinger equation

ih̄
d|ψ〉

dt
= H|ψ〉

where h̄ is Planck’s constant and H is a Hermitian operator, the Hamiltonian
of the system.

If the system is in state |ψ〉 at time 0, then the state |ψ(t)〉 at time t is
determined by |ψ(t)〉=U(t)|ψ〉, for the operator U(t) with

U(t) = exp(
−iH(t)

h̄
)

Lemma. If H(t) is Hermitian, then U(t) is unitary.

In quantum computing, time is discrete and we speak of computational steps.
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Global phase and physical indistinguishable states

Consider two states |ψ〉 and eiϕ |ψ〉, for any 0 < ϕ < 2π .

For any unitary operator U , we have that Ueiϕ |ψ〉= eiϕU |ψ〉.

For any measurement operator Pm, we have that

〈ψ | e−iϕP†
mPmeiϕ |ψ〉= 〈ψ |P†

mPm|ψ〉.

Thus, such a global phase eiϕ is unobservable and the two states are
physically indistinguishable.

Caution. Even if |ψ〉 and eiϕ |ψ〉 are physically indistinguishable, this need
not be the case for states |ψ ′〉+ |ψ〉 and |ψ ′〉+ eiϕ |ψ〉.
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Quantum gates and quantum gate arrays

A quantum gate on m qubits is a unitary tranformation U : H2m → H2m

on the 2m-dimensional Hilbert space H2m
= H2⊗·· ·⊗H2.

A quantum gate array (or quantum circuit) is a sequence of applications of
quantum gates to specific qubits.

The fact that quantum mechanical processes, and quantum computation in
particular, can only evolve by unitary transformations, has severe
consequences:

Quantum computations are reversible

It is not possible to simply copy arbitrary qubits
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The No-Cloning Theorem

Theorem. Let Hn be any Hilbert space of dimension n > 1. There is no
unitary transformation Copy : Hn⊗Hn→ Hn⊗Hn such that,

Copy(|ψ〉|0〉) = |ψ〉|ψ〉

for some |0〉 ∈ Hn and all |ψ〉 ∈ Hn.

Proof. Assume that Copy and |0〉 exist. Since n > 1, there exists a unit vector
|1〉 that is orthogonal to |0〉. For ψ = 1√

2
(|0〉+ |1〉), we have

Copy(|ψ〉|0〉) = 1√
2
(Copy(|0〉|0〉)+Copy(|1〉|0〉))

= 1√
2
(|0〉|0〉+ |1〉|1〉) 6= |ψ〉|ψ〉

because |ψ〉|ψ〉= 1
2(|0〉|0〉+ |0〉|1〉+ |1〉|0〉+ |1〉|1〉). Contradiction.
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