
Quantum Computing
WS 2009/10

Prof. Dr. Erich Grädel

Mathematische Grundlagen der Informatik
RWTH Aachen

cbnd
This work is licensed under:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/
Dieses Werk ist lizenziert unter:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

© 2015 Mathematische Grundlagen der Informatik, RWTH Aachen.
http://www.logic.rwth-aachen.de

Contents

1 Introduction 1
1.1 Historical overview . 1
1.2 An experiment . 2
1.3 Foundations of quantum mechanics 3
1.4 Quantum gates and quantum gate arrays 7

2 Universal Quantum Gates 19

3 Quantum Algorithms 25
3.1 The Deutsch-Jozsa algorithm 25
3.2 Grover’s search algorithm . 27
3.3 Fourier transformation . 34
3.4 Quantum Fourier transformation 42
3.5 Shor’s factorisation algorithm 46

1 Introduction

1.1 Historical overview

The history of quantum computing started in 1982 when Nobel laure-
ate Richard Feynman argued that certain quantum mechanical effects
cannot be simulated efficiently by classical computers. This started a
debate whether these effects (in particular the parallelism which occurs
inherently in quantum mechanical processes) could be employed by
building a quantum computer.

Between 1985 and 1993, in a series of papers, Deutsch, Bernstein-
Vazirani, Yao, and others advanced the theoretical foundations of quan-
tum computing by providing theoretical models such as quantum Tur-
ing machines and quantum gate arrays as well as introducing complex-
ity classes for quantum computing and several simple algorithms that
could be performed by a quantum computer.

A breakthrough occurred in 1994 when Peter Shor published his
factorisation algorithm for quantum computers, which runs in poly-
nomial time. His algorithm relies on the so-called quantum Fourier
transformation, which we will introduce later. Another example of a
quantum algorithm is Grover’s search algorithm (1996), that can find a
needle in a haystack of size N in time O(

√
N).

Despite these surprising results, quantum computing still faces
several problems: There are not many more algorithms known besides
the one we have mentioned, and a quantum computer of moderate size
that can keep a stable state for a sufficient amount of time needs yet to be
built. So far, one was only able to build a quantum computer consisting
of 7 qubits, which successfully factorised the number 15 = 3 · 5.

1

1 Introduction

1.2 An experiment

The following experiment can be conducted using easily accessible
ingredients:

• a powerful light source (e.g. a laser),

• three polarisation filters, which polarise light horizontally, verti-
cally, and with an angle of 45°, respectively.

If we put one or more of the polarisation filters in front of the light
source, we will make the following observations:

(1) If only the horizontal polarisation filter (→) is put in front of the
light source, 50% of light passes through.

(2) If the vertical polarisation filter (↑) is put in front of the horizontal
filter, 50% of light passes through the first filter, but the remaining
light gets blocked by the second filter.

(3) However, if the diagonal filter (↗) is put between → and ↑, we can
observe that, from the total light emitted by the source, 50% passes
through the first filter, 25% passes through the first two filters, and
12.5% of the light passes through all three filters, after all.

To explain these results, we describe the polarisation state of a
photon by a vector

|φ⟩ := α|↑⟩+ β|→⟩

in a 2-dimensional vector space with basis {|↑⟩, |→⟩}. Since the direc-
tion of such a vector is all that matters, we only consider unit vectors:
|α|2 + |β|2 = 1. Also note that the choice of the basis is arbitrary: In-
stead of {|↑⟩, |→⟩}, one could also take {|↗⟩, |↘⟩} or, for that matter,
any pair of orthogonal unit vectors.

The measurement of a state corresponds to the projection of such
a vector with respect to an orthonormal basis, e.g. {|↑⟩, |→⟩}, which
is given by the present equipment: If the vector |φ⟩ = α|↑⟩+ β|→⟩ is
measured, it is projected either to |↑⟩ (with probability |α|2) or to |→⟩
(with probability |β|2).

2

1.3 Foundations of quantum mechanics

After the measurement, the vector φ is “destroyed”, i.e. it has been
transformed into one of the basic states |↑⟩ or |→⟩. There is no way to
gain back φ, and each successive measurement gives the same result as
the first one.

To each polarisation filter belongs a different orthonormal basis: If
the angle of the filter is η, then the corresponding basis is

{sin η|↑⟩+ cos η|→⟩ , cos η|↑⟩ − sin η|→⟩}.

In particular, for both the horizontal and the vertical polarisation filter,
the corresponding basis is {|↑⟩, |→⟩}, whereas for the diagonal filter ↗,
the basis is

{|↗⟩, |↘⟩} =
{ 1√

2
(|↑⟩+ |→⟩), 1√

2
(|↑⟩ − |→⟩)

}

The photons that, after the measurement, correspond to the polari-
sation, pass through the filter; the others are reflected. Hence, filter →
projects 50% of the photons onto |→⟩ and lets them pass; the other 50%
are projected onto |↑⟩ and thus reflected. Filter ↑, on the other hand,
reflects all photons that are projected on |→⟩. Hence, no light passes
through this filter if it is put behind filter →.

Filter ↗ projects a photon in state |→⟩ = 1√
2
|↗⟩ − 1√

2
|↘⟩ with

probability 1
2 onto |↗⟩. Hence, if filter ↗ is put in between filter →

and filter ↑, then 25% of the photons pass through the first two filters
and are subsequently in state |↗⟩. Since |↗⟩ = 1√

2
|→⟩+ 1√

2
|↑⟩, half

of these are projected by ↑ to |↑⟩ and can pass through.

1.3 Foundations of quantum mechanics

In general, a state is a complete description of a physical system. In
quantum mechanics, a state is a unit vector in a Hilbert space.

Definition 1.1. A Hilbert space H is a vector space over the field C of
complex numbers, equipped with an inner product

⟨· | ·⟩ : H × H → C

3

1 Introduction

with the following properties:

• ⟨ψ | φ⟩ = ⟨φ | ψ⟩∗ for all ψ, φ ∈ H (for a complex number z = a+ ib,
its conjugate z∗ is defined by z∗ = a − ib).

• ⟨ψ | ψ⟩ ≥ 0 for all ψ ∈ H, and ⟨ψ | ψ⟩ = 0 if and only if ψ = 0 (the
zero vector).

• ⟨ψ | αφ1 + βφ2⟩ = α⟨ψ | φ1⟩+ β⟨ψ | φ2⟩ for all ψ, φ1, φ2 ∈ H and
α, β ∈ C.

Note that, if H is a Hilbert space, then ∥·∥ : H → C, defined by

∥ψ∥ :=
√
⟨ψ | ψ⟩

for all ψ ∈ H, defines a norm on H.

Remark 1.2. For Hilbert spaces of infinite dimension, in which we are
not interested here, it is also required that H is complete (with respect
to ∥·∥), i.e. that any Cauchy sequence has a limit.

In quantum mechanics, a vector ψ ∈ H is usually written in Dirac
notation as |ψ⟩ (read ket ψ). However, the zero vector is denoted by 0
(not |0⟩, which might be a different vector). For a given vector |ψ⟩, its
dual vector is denoted by ⟨ψ| (read bra ψ). Formally, ⟨ψ| is the function
from H to C that maps a vector |φ⟩ to the number ⟨ψ | φ⟩.

Definition 1.3. An orthonormal basis of a Hilbert space H is a basis
{|e1⟩, . . . , |en⟩} of H such that

⟨ei | ej⟩ =





1 if i = j,

0 if i ̸= j,

for all i, j = 1, . . . , n. In particular, ∥ei∥ = 1 for all i = 1, . . . , n.

The elementary building blocks of a classical computer are the bits,
which can be in one of two states 0 or 1. In quantum computing, the
elementary building blocks are the qubits; these are superpositions of
two vectors |0⟩ and |1⟩, which form a basis for the 2-dimensional Hilbert
space H2. (Note that any two Hilbert spaces of the same dimension are
isomorphic.)

4

1.3 Foundations of quantum mechanics

Definition 1.4. Given a basis |0⟩, |1⟩ of H2, a qubit is any vector |ψ⟩ =
α|0⟩+ β|1⟩ ∈ H2 such that |α|2 + |β|2 = 1.

If a qubit |ψ⟩ = α|0⟩+ β|1⟩ is measured, then with probability |α|2
we obtain the state |0⟩, and with probability |β|2 we obtain the state |1⟩.
Moreover, any successive measurement leads to the same result. Hence,
although a qubit can be in one of infinitely many states, we can only
extract one bit of classical information. This process of extraction (the
measurement) is, in fact, a probabilistic process.

Of course, a quantum computer will normally not only have access
to one qubit but to many of them. A classical system with n bits
comprises 2n states 0 · · · 0, 0 · · · 1 up to 1 · · · 1. An n-qubit system, on the
other hand, has 2n basic states and can reside in any superposition

α0|0 · · · 0⟩+ α1|0 · · · 1⟩+ · · ·+ α2n−1|1 · · · 1⟩

such that ∑2n−1
i=0 |αi|2 = 1. Such systems are also called quantum registers.

The n-qubit space H2n can be obtained from H2 by an operation
called the tensor product. Formally, if V and W are Hilbert spaces, then
V ⊗ W (read V tensor W) is a Hilbert space of dimension dim V ⊗ W =

dim V · dim W. Any two vectors |ψ⟩ ∈ V and |φ⟩ ∈ W correspond
to a vector |ψ⟩ ⊗ |φ⟩ ∈ V ⊗ W, and this operation is compatible with
addition and scalar multiplication:

• (|ψ1⟩+ |ψ2⟩)⊗ |φ⟩ = |ψ1⟩ ⊗ |φ⟩+ |ψ2⟩ ⊗ |φ⟩;
• |ψ⟩ ⊗ (|φ1⟩+ |φ2⟩) = |ψ⟩ ⊗ |φ1⟩+ |ψ⟩ ⊗ |φ2⟩;
• α|ψ⟩ ⊗ |φ⟩ = |ψ⟩ ⊗ α|φ⟩ = α(|ψ⟩ ⊗ |φ⟩).

In fact, if {v1, . . . , vn} is a basis of V and {w1, . . . , wm} is a basis of W,
then {vi ⊗ wj : i = 1, . . . , n, j = 1, . . . , m} is a basis of V ⊗ W. Note
that this space is different from the product space V × W, which is of
dimension dim V + dim W. Instead of |ψ⟩ ⊗ |φ⟩, we also write |ψ⟩|φ⟩
or |ψφ⟩. We have

H2n = H2 ⊗ · · · ⊗ H2︸ ︷︷ ︸
n times

,

and {|0 · · · 0⟩, |0 · · · 1⟩, . . . , |1 · · · 1⟩} is a basis of H2n . Note that

5

1 Introduction

dim H2n = 2n. Hence, the dimension of the system grows exponentially
in the number of qubits.

As opposed to H2 × H2, not every state in H2 ⊗ H2 can be decom-
posed into two states of H2. We call such states entangled.

Proposition 1.5. There exists a unit vector |ψ⟩ ∈ H2 ⊗ H2 such that
|ψ⟩ ̸= |φ1⟩ ⊗ |φ2⟩ for any two vectors |φ1⟩, |φ2⟩ ∈ H2.

Proof. Consider, for example, |ψ⟩ := 1√
2
(|00⟩+ |11⟩), and assume that

there exists |φ1⟩, |φ2⟩ ∈ H2 with |ψ⟩ = |φ1⟩ ⊗ |φ2⟩. Then there exist
α1, α2, β1, β2 ∈ C such that |φi⟩ = αi|0⟩+ βi|1⟩ for i = 1, 2. Hence,

|ψ⟩ = (α1|0⟩+ β1|1⟩)⊗ (α2|0⟩+ β2|1⟩)
= α1α2|00⟩+ α1β2|01⟩+ α2β1|10⟩+ β1β2|11⟩

Since {|00⟩, |01⟩, |10⟩, |11⟩} forms a basis of H2 ⊗ H2, we have α1β2 =

α2β1 = 0. But then, also α1α2 = 0 or β1β2 = 0, a contradiction. q.e.d.

In an n-qubit system, each qubit can be measured separately. The
measurement of the first qubit of an n-qubit state |ψ⟩ = ∑v∈{0,1}n αv|v⟩
can have two outcomes:

• With probability p = ∑w∈{0,1}n−1 |α0w|2, the result of the measure-
ment is |0⟩, and |ψ⟩ is projected onto the vector

|0⟩ ⊗ 1√
p ∑

w∈{0,1}n−1

α0w|w⟩.

• With probability q = ∑w∈{0,1}n−1 |α1w|2, the result of the measure-
ment is |1⟩, and |ψ⟩ is projected onto the vector

|1⟩ ⊗ 1√
q ∑

w∈{0,1}n−1

α1w|w⟩.

A quantum-mechanical system evolves through unitary transforma-
tions. Formally, a linear operator U : H → H : |ψ⟩ 7→ U|ψ⟩ is unitary if
it preserves the inner product:

⟨Uψ | Uφ⟩ = ⟨ψ | φ⟩

6

1.4 Quantum gates and quantum gate arrays

For the presentation of an operator by a matrix U ⊆ Cn×n this means
that U∗U = UU∗ = I (the identity matrix), where U∗ is the conjugate
transpose of U, i.e. the matrix that results from U by transposing U
and replacing each entry by its conjugate. In particular, every unitary
transformation is invertible, i.e. reversible.

Finally, we can postulate that any computation of a quantum
computer consists of reversible building blocks (combined with mea-
surements). This imposes a serious limitation on quantum computers.
For example, this implies that no quantum computer can simply copy
around some qubits.

Theorem 1.6 (No-Cloning Theorem). Let H be any Hilbert space of
dimension n > 1. There does not exist a unitary transformation Copy :
H ⊗ H → H ⊗ H and a vector |0⟩ ∈ H such that Copy(|ψ⟩ ⊗ |0⟩) =

|ψ⟩ ⊗ |ψ⟩ for all ψ ∈ H.

Proof. Assume that Copy and |0⟩ exist. Since n > 1, there exists a unit
vector |1⟩ that is orthogonal to |0⟩. Let ψ = 1√

2
(|0⟩+ |1⟩). We have:

Copy(|ψ⟩|0⟩) = 1√
2
(Copy(|0⟩|0⟩) + Copy(|1⟩|0⟩))

=
1√
2
(|0⟩|0⟩+ |1⟩|1⟩)

The latter vector is different from |ψ⟩|ψ⟩ = 1
2 (|00⟩+ |01⟩+ |10⟩+ |11⟩),

a contradiction. q.e.d.

1.4 Quantum gates and quantum gate arrays

Definition 1.7. A quantum gate on m qubits is a unitary transforma-
tion U : H2m → H2m on the Hilbert space H2m = H2 ⊗ · · · ⊗ H2 of
dimension 2m.

For m = 1, a quantum gate is a unitary transformation U : H2 →
H2. Consider the standard basis |0⟩, |1⟩ of H2. The transformation U is
uniquely determined by its behaviour on the basis vectors:

U : |0⟩ 7→ a|0⟩+ b|1⟩

7

1 Introduction

|1⟩ 7→ c|0⟩+ d|1⟩,

As usual in linear algebra, we write these vectors as column vectors (a
b)

and (c
d), respectively. Hence, the application of U on the basis vectors

|0⟩ = (1
0) and |1⟩ = (0

1) corresponds to a multiplication of the matrix

(
a c

b d

)

with these vectors. That U is unitary is expressed by the matrix equation

(
a∗ b∗

c∗ d∗

)(
a c

b d

)
=

(
1 0

0 1

)

Example 1.8.

(1) The not gate is given by the matrix

M¬ =

(
0 1

1 0

)
.

We have M¬|0⟩ = |1⟩ and M¬|1⟩ = |0⟩.
(2) Consider the matrix

M =
1
2

(
1 + i 1 − i

1 − i 1 + i

)
.

M is unitary since

M∗M =
1
4

(
1 − i 1 + i

1 + i 1 − i

)(
1 + i 1 − i

1 − i 1 + i

)

=
1
4

(
2(1 − i2) (1 − i)2 + (1 + i)2

(1 − i)2 + (1 + i)2 2(1 − i2)

)

=

(
1 0

0 1

)
.

Moreover, we have

8

1.4 Quantum gates and quantum gate arrays

M2 =
1
4

(
1 + i 1 − i

1 − i 1 + i

)2

=

(
0 1

1 0

)
= M¬ .

Hence, M is a square root of M¬, and we write M =
√

M¬ .

(3) The Hadamard transformation is given by the matrix

H =
1√
2

(
1 1

1 −1

)
.

It transforms the standard basis |0⟩, |1⟩ into the Hadamard basis
(also called the Fourier basis)

|0′⟩ = H |0⟩ = 1√
2
(|0⟩+ |1⟩)

|1′⟩ = H |1⟩ = 1√
2
(|0⟩ − |1⟩)

(see Section 1.2) and back:

H |0′⟩ = H
(

1/
√

2
1/

√
2

)
=

(
1
0

)
= |0⟩

H |1′⟩ = H
(

1/
√

2
1/

√
2

)
=

(
0
1

)
= |1⟩

We denote the operation of a quantum gate U on 1 qubit as follows:

1 U

Other important gates on 1 qubit are

S =

(
1 0

0 i

)
(Phase)

and

T =

(
1 0

0 eiπ/4

)
.

Note that S = T2.

9

1 Introduction

For m = 2, we are dealing with 2-qubit gates, which are of the
form U : H4 → H4. The standard basis of H4 is |00⟩, |01⟩, |10⟩, |11⟩, or
as coordinates

(1
0
0
0

)
,
(0

1
0
0

)
,
(0

0
1
0

)
,
(0

0
0
1

)
.

Example 1.9. The controlled not gate (cnot) is given by the matrix

Mcnot =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




We have:

Mcnot|00⟩ = |00⟩, Mcnot|01⟩ = |01⟩,
Mcnot|10⟩ = |11⟩, Mcnot|11⟩ = |10⟩.

Hence, Mcnot|ij⟩ = |i⟩ ⊗ |i ⊕ j⟩ (⊕ denotes exclusive or, i.e. i ⊕ j = 1 if
and only if i ̸= j). The operation of cnot on 2 qubits is denoted as
follows:

1

2

In general, if U is a unitary transformation on 1 qubit, then we can
define a unitary transformation c-U (read controlled U) on 2 qubits as
follows:

c-U|ij⟩ = |i⟩ ⊗





U|j⟩ if i = 1,

|j⟩ if i = 0.

Graphically, this operation is denoted as follows:

10

1.4 Quantum gates and quantum gate arrays

1

2 U

If U is represented by the matrix (a c
b d), then c-U is represented by the

matrix



1 0 0 0

0 1 0 0

0 0 a c

0 0 b d




.

For m = 3, an interesting gate is c-cnot, better known as the Toffoli
gate Tf, which is defined as follows:

Tf |ijk⟩ = |ij⟩ ⊗ |ij ⊕ k⟩.

The corresponding matrix is




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0




.

Graphically, this operation is denoted as follows:

1

2

3

11

1 Introduction

Of course, it is also possible to consider the Toffoli gate as a classical
gate

Tf : {0, 1}3 → {0, 1}3 : (i, j, k) 7→ (i, j, ij ⊕ k).

In fact, every classical circuit can be simulated by a circuit consisting of
Tf gates only. For f : {0, 1}n → {0, 1}n consider the reversible function

f ′ : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n : (x, y) 7→ (x, f (x)⊕ y).

We show that any reversible function can be computed by a circuit
consisting of Tf gates.

More formally, we say that a set Ω of reversible gates is complete
(for classical reversible computation) if, given any reversible function
g : {0, 1}n → {0, 1}n, we can construct a circuit consisting of gates in Ω
only that computes a function h : {0, 1}n × {0, 1}k → {0, 1}n × {0, 1}k

such that for a fixed u ∈ {0, 1}k we have

h(x, u) = (g(x), v)

for all x ∈ {0, 1}n.

Theorem 1.10. {Tf} is complete (for classical reversible computation).

Proof. We use the fact that every function can be computed by (classical)
circuit consisting of nand gates. Then, we can replace each nand gate
with inputs x and y by a Toffoli gate with inputs x, y and 1 (Note that
xy ⊕ 1 = ¬(x ∧ y)):

x

y
¬(x ∧ y)

n
a

n
d

⇝

x

y

1

x

y

xy ⊕ 1

Similarly, we can replace every branching with input x by a Toffoli gate
with inputs 1, x and 0 (Note that x ⊕ 0 = x):

12

1.4 Quantum gates and quantum gate arrays

x

x

x

⇝

1

x

0

1

x

x ⊕ 0

q.e.d.

Recall that c-U executes U on the target qubit if and only if the
control qubit is set to 1:

1

2 U

We can switch the gate’s behaviour by introducing two ¬ gates:

1

2 U

=

1

2

¬ ¬

U

The resulting operation executes U if the control qubit is set to 0:

|ij⟩ 7→ |i⟩ ⊗





U|j⟩ if j = 0,

|j⟩ if j = 1.

Formally, the parallel execution of two unitary transformations
corresponds to a tensor product of their matrices.

Definition 1.11. Let

A =




a11 · · · a1n
...

...

am1 · · · amn


 , B =




b11 · · · b1s
...

...

ar1 · · · brs




13

1 Introduction

be two matrices of sizes m × n and r × s, respectively. The matrix

A ⊗ B :=




a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
...

am1B am2B · · · amnB




of size mr × ns is called the tensor product of A and B.

Proposition 1.12. Let A and B be two 2 × 2 matrices that represent
quantum gates on one qubit. Then, the simultaneous action of A on the
first and B on the second qubit is represented by A ⊗ B.

Proof. We have to check what the simultaneous action of A and B does
to the basis vectors |00⟩, |01⟩, |10⟩ and |11⟩ of H4. If

A =

(
a00 a01

a10 a11

)
and B =

(
b00 b01

b10 b11

)
,

then the basis vector |ij⟩ is mapped to

A|i⟩ ⊗ B|j⟩ = (a0i|0⟩+ a1i|1⟩)⊗ (b0j|0⟩+ b1j|1⟩)
= a0ib0j|00⟩+ a0ib1j|01⟩+ a1ib0j|10⟩+ a1ib1j|11⟩

Hence, in the matrix representing this operation the column correspond-
ing to |ij⟩ is




a0ib0j

a0ib1j

a1ib0j

a1ib1j




This is indeed the column that corresponds to |ij⟩ in

14

1.4 Quantum gates and quantum gate arrays

A ⊗ B =




a00b00 a00b01 a01b00 a01b01

a00b10 a00b11 a01b10 a01b11

a10b00 a10b01 a11b00 a11b01

a10b10 a10b11 a11b10 a11b11




.

q.e.d.

This correspondence does not only hold for transformations on H2

but for transformation on any Hilbert space: If A and B are unitary
transformation on two Hilbert spaces V and W, then A ⊗ B defines the
unitary transformation on V ⊗ W that corresponds to the simultaneous
(or sequential) composition of A and B (the order does not matter).
Moreover, A ⊗ B does not introduce any entanglement.

Example 1.13. Let A = B = H the Hadamard transformation. Then

H⊗H =
1√
2

(
1 1

1 −1

)
⊗ 1√

2

(
1 1

1 −1

)

=
1
2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




,

and

(H⊗H)|ij⟩ = 1
2
(
|00⟩+ (−1)j|01⟩+ (−1)i|01⟩+ (−1)i+j|11⟩

)

=
1
2
(
|0⟩+ (−1)i|1⟩)⊗ (|0⟩+ (−1)j|1⟩

)
,

a non-entangled state, which is not a surprise given that |ij⟩ is not
entangled and that H⊗H stands for the simultaneous action of H on
each qubit.

On the other hand, Mcnot cannot be represented as a tensor prod-
uct of two 2 × 2 matrices. To see this, consider the operation of Mcnot

on the non-entangled state |ψ⟩ = 1√
2
(|0⟩+ |1⟩)⊗ |0⟩ = 1√

2
(|00⟩+ |10⟩).

We have Mcnot|ψ⟩ = 1√
2
(|00⟩ + |11⟩), and we know that this is an

15

1 Introduction

entangled state. Hence, Mcnot cannot possibly be equal to a tensor
product of two 2 × 2 matrices.

Let us revisit the Hadamard transformation H, defined by the
matrix

H =
1√
2

(
1 1

1 −1

)
,

and consider the operation

H⊗n = H⊗ · · · ⊗ H︸ ︷︷ ︸
n times

on n qubits. We have:

H⊗n |0 . . . 0⟩ = H |0⟩ ⊗ · · · ⊗ H |0⟩

=
1√
2n

(
(|0⟩+ |1⟩)⊗ · · · ⊗ (|0⟩+ |1⟩)

)

=
1√
2n ∑

x∈{0,1}n

|x⟩.

Hence, the first basis vector |0 . . . 0⟩ is transformed into a uniform
superposition of all the 2n basis vectors. Graphically, this operation is
denoted as follows:

1

2

...

n

H

H

...

H

Definition 1.14. Let Ω be a set of quantum gates. A quantum gate
array (QGA) (or a quantum circuit) on n qubits over Ω is a unitary
transformation, which is composed out of quantum gates in Ω.

Note that mathematically there is no difference between a quantum
gate and a QGA: both are unitary transformations. The idea is that,

16

1.4 Quantum gates and quantum gate arrays

while a QGA may operate on a large number of qubits, a quantum gate
may only operate on a small number of qubits.

The basic step in building a quantum gate array is letting a single
gate U operate on a selected number of qubits, say the qubits i1, . . . , im.
Mathematically, this operation (on n qubits) can be described by the
unitary transformation

P−1
i1 ...im

(U ⊗ I2n−m)Pi1 ...im

where I2n−m is the identity mapping on H2n−m and Pi1 ...im is the transfor-
mation that permutes the qubits 1, . . . , m with the qubits i1, . . . , im.

1
...

i1
...

im

...

n

U

Example 1.15. Consider the following QGA consisting of Hadamard and
cnot gates:

1

2

H H

H H

The corresponding unitary transformation is U = H⊗2 ·Mcnot · H⊗2.
We claim that U = P−1

21 Mcnot P21, the operation of Mcnot on the qubits
2 and 1 (instead of 1 and 2). Let M = Mcnot. Then:

U|ij⟩ = H⊗2 ·M
(1

2
(
|0⟩+ (−1)i|1⟩

)
⊗
(
|0⟩+ (−1)j|1⟩

))

= H⊗2 ·M
(1

2
(
|00⟩+ (−1)j|01⟩+ (−1)i|10⟩+ (−1)i+j|11⟩

))

17

1 Introduction

= H⊗2
(1

2
(
|00⟩+ (−1)j|01⟩+ (−1)i+j|10⟩+ (−1)i|11⟩

))

= H⊗2 H⊗2 (|i ⊕ j⟩ ⊗ |j⟩
)

= |i ⊕ j⟩ ⊗ |j⟩

18

2 Universal Quantum Gates

Consider the n-ary controlled operation cn-U defined by

cn-U|i1 . . . in j⟩ = |i1 . . . in⟩ ⊗





U|j⟩ if i1, . . . , in = 1,

|j⟩ otherwise.

How can we implement a complicated operation such as cn-U using
simple gates such as Tf and c-U? The idea is to introduce a certain
number of control qubits, which are initially set to 0. Then, we can
implement cn-U as follows (the right part of the array resets the work
qubits to 0):

1

2

3

4

5

|0⟩

|0⟩

|0⟩

|0⟩

6 U

19

2 Universal Quantum Gates

In fact, we can build up the Toffoli gate Tf from the two-qubit gates
c-V, c-V−1 and c-M¬, where

V =
√

M¬ =
1
2

(
1 + i 1 − i

1 − i 1 + i

)
,

as follows:

=

V V−1 V

To see this, note that the gate on the right maps |ijk⟩ to |ij⟩ ⊗
| f (i, j, k)⟩, where

| f (i, j, k)⟩ =





|k⟩ if |ij⟩ = |00⟩,
V−1V|k⟩ = |k⟩ if |ij⟩ = |01⟩,
VV−1|k⟩ = |k⟩ if |ij⟩ = |10⟩,
VV|k⟩ = |k ⊕ 1⟩ if |ij⟩ = |11⟩

= |ij ⊕ k⟩.

Lemma 2.1. Tf is computable by a QGA over {H, c-M¬, S, T, T−1} (see
Figure 2.1).

Proof. By calculation. q.e.d.

The general question here is which gates are sufficient for building
arbitrary unitary transformations. We will show that a QGA can be
approximated arbitrarily well by a QGA that consists of Hadamard, cnot
and T gates only. More precisely, we will show that

(1) every unitary transformation U can be written as a product U =

Um . . . U1 of unitary operators Ui that operate nontrivially only on
a two-dimensional subspace of H2n (generated by two vectors of
the standard basis).

20

=

H
T
−

1
T

T
−

1

T
−

1

T
H

T
−

1

T S

Figure 2.1. An implementation of the Toffoli gate over {H, c-M¬, S, T, T−1}.

21

2 Universal Quantum Gates

(2) every unitary transformation can be composed from cnot and
quantum gates that operate on one qubit only;

(3) 1-qubit quantum gates can be approximated arbitrarily well using
H and T.

To prove (1), consider a unitary transformation U : Hm → Hm

described by a unitary (m × m)-matrix.

Lemma 2.2. U is a product of unitary matrices of the form




1
. . .

1
a c

1
. . .

1
b d

1
. . .

1




.

Proof. Consider, for instance, m = 3 and

U =




a d g

b e h

c f j


 .

If b = 0, set U1 = I. Otherwise, set

U1 =




a∗
δ

b∗
δ

b
δ − a

δ

1


 ,

where δ =
√
|a|2 + |b|2. The matrix U1 is unitary, and U1 · U is of the

form

U1 · U =




a′ d′ g′

0 e′ h′

c′ f ′ j′


 .

22

If c′ = 0, set U2 =

(
a′ ∗

1
1

)
. Otherwise, set

U2 =
1√

|a′|2 + |c′|2




a′∗ 0 c′∗

0 1 0

c′ 0 −a′


 .

The matrix U2U1U is unitary and of the form

U2U1U =




1 d′′ g′′

0 e′′ h′′

c′ f ′′ j′′


 .

Since U2U1U is unitary, we have d′′ = g′′ = 0. Finally, set

U3 =




1

e′′∗ f ′′∗

h′′∗ j′′∗


 .

We have U3U2U1U = I, so U = U∗
1 U∗

2 U∗
3 , and each U∗

i is of the desired
form.

In general, we are able to find matrixes U1, . . . , Uk of the desired
form such that Uk . . . U1U = I, where k ≤ (m− 1) + (m− 2) + · · ·+ 1 =
m(m−1)

2 . q.e.d.

Corollary 2.3. A unitary transformation on n qubits is equivalent to
a product of at most 2n−1(2n−1 − 1) unitary matrices that operate
nontrivially only on a 2-dimensional subspace of H2n (generated by two
vectors of the standard basis).

Remark 2.4. The exponential blowup incurred by this translation is not
avoidable.

We can now turn towards proving (2).

Lemma 2.5. Let U : H2n → H2n be a unitary transformation that
operates nontrivially only on the subspace of H2n generated by |x⟩ =
|x1 . . . xn⟩ and |y⟩ = |y1 . . . yn⟩. Then U is a product of cnot and
1-qubit gates.

23

2 Universal Quantum Gates

Proof (Sketch). Let V be the nontrivial, unitary (2 × 2)-submatrix of U.
V can be viewed as a 1-qubit gate. Recall that, for each n, the opera-
tion cn-V can be implemented using Tf (which can be built from cnot
and single qubit gates) and c-V. The gate c-V, on the other hand, can
be implemented using cnot and single qubit operations (see Nielsen &
Chuang, Quantum Computation and Quantum Information, Section 4.3).

Fix a sequence |z1⟩, . . . , |zm⟩ of basis vectors such that |z1⟩ = |x⟩,
|zm⟩ = |y⟩, and |zi⟩ differs from |zi+1⟩ on precisely one qubit. The idea
is to implement U as a product U = P1 · · · Pm−1(c∗-V)Pm−1 · · · P1. The
matrix Pi maps |zi⟩ to |zi+1⟩ and vice versa, and c∗-V is the operation
of V on the qubit that distinguishes |zm−1⟩ and |zm⟩, controlled by all
other qubits. Note that Pm−1 · · · P1 maps |x⟩ to |y⟩, and P1 · · · Pm−1

maps |y⟩ back to |x⟩. As we have seen, c∗-V and each Pi can be
implemented using cnot and 1-qubit gates. q.e.d.

Finally, we can discuss (3), the reduction of arbitrary 1-qubit gates
to H and T. Note that there exist uncountably many unitary transfor-
mations U : H2n → H2n , but from a finite (or even countably infinite)
set of gates, we can only compose countably many QGAs. Hence, there
is no way of representing every 1-qubit gate exactly using a fixed finite
set of gates. However, an approximation is possible! For two unitary
transformations U and V, we define

E(U, V) := max
∥|ψ⟩∥=1

∥(U − V)|ψ⟩∥.

Definition 2.6. A set Ω of quantum gates is universal if for any QGA U
and every ε > 0, there is a QGA V consisting only of gates from Ω such
that E(U, V) ≤ ε.

Theorem 2.7 (Solvay-Kitaev). For every QGA U consisting of m cnot
or 1-qubit gates and for every ε > 0, there exists a QGA V of size
O(m · logc m

ε), c ≈ 2, consisting of cnot, H and T gates only such that
E(U, V) ≤ ε.

24

3 Quantum Algorithms

3.1 The Deutsch-Jozsa algorithm

Suppose that your task is to decide whether a function f : {0, 1}n →
{0, 1} is either constantly equal to 0 or it is balanced, i.e. f (x) = 1 for
precisely half of all inputs x ∈ {0, 1}n (either one of these two cases is
guaranteed to hold). If you decide correctly, you are awarded 1 000 €.
On the other hand, a false answer is fatal. To help you find the right
answer, you can repeatedly ask for the value of f for a given input x.
Each such query will set you back 2 €.

Classically, there is a good chance to find the right answer by
drawing an input x uniformly at random. Clearly, if f (x) = 1, you can
be sure that f is balanced. On the other hand, if f is balanced, then
the probability that f (x) = 0 for k inputs, chosen uniformly at random,
is 1/2k, which converges to 0 exponentially fast. However, unless you
query more than 2n−1 many inputs or get the answer that f (x) = 1,
you cannot be sure of your answer.

Suppose now that you may query a QGA on n + 1 qubits for
computing the function U f defined by1

U f |x⟩|j⟩ = |x⟩| f (x)⊕ j⟩.

Clearly, QGAs are more expensive than classical circuits, so let us say
that each application of U f costs 500 €. Can you get the correct answer
and still make money in this case?

Surprisingly, the answer is yes since there exists a QGA that decides
whether f is balanced with just one application of U f :

1Note that U f has to be unitary.

25

3 Quantum Algorithms

|0n⟩

|1⟩

H⊗n

H

U f

H⊗n

Measurement

Let us examine what the circuit does: First, the vector |0n⟩ ⊗ |1⟩ is
mapped by H⊗n+1 to

1√
2n+1 ∑

x∈{0,1}n

|x⟩ ⊗ (|0⟩ − |1⟩) .

Second, the QGA for U f is applied to this vector, which yields the vector

1√
2n+1 ∑

x∈{0,1}n

(
|x⟩ ⊗ (−1) f (x)(|0⟩ − |1⟩)

=

(
∑

x∈{0,1}n

(−1) f (x)|x⟩√
2n

)
⊗ |0⟩ − |1⟩√

2

=

(
∑

x∈{0,1}n

(−1) f (x)|x⟩√
2n

︸ ︷︷ ︸
=:|ψ f ⟩

)
⊗ H |1⟩

To see what is the result of H⊗n |ψ f ⟩, note that for x ∈ {0, 1}, we can
write H |x⟩ as follows:

H |x⟩ = 1√
2

(
|0⟩+ (−1)x|1⟩

)

=
1√
2

∑
z∈{0,1}

(−1)xz|z⟩ .

Analogously, for x = x1 · · · xn ∈ {0, 1}n, we have

H⊗n |x⟩ = 1√
2n ∑

z=z1···zn∈{0,1}n

(−1)x1z1+···+xnzn |z⟩

=
1√
2n ∑

z∈{0,1}n

(−1)x·z|z⟩ .

26

3.2 Grover’s search algorithm

Hence,

H⊗n |ψ f ⟩ =
1√
2n ∑

x∈{0,1}n

(−1) f (x) H⊗n |x⟩

=
1

2n ∑
x∈{0,1}n

∑
z∈{0,1}n

(−1) f (x)+x·z|z⟩

=
1

2n ∑
z∈{0,1}n

∑
x∈{0,1}n

(−1) f (x)+x·z|z⟩ .

In particular, the amplitude of the basis vector |0n⟩ in H⊗n |ψ f ⟩ is
1
2n ∑x∈{0,1}n (−1) f (x). If f ≡ 0, then this amplitude is equal to 1 and,
with probability 1, the final measurement yields |0n⟩. On the other hand,
if f is balanced, then the amplitude of |0n⟩ is 0 and, with probability 1,
the final measurement yields a basis vector different from |0n⟩.

3.2 Grover’s search algorithm

While the Deutsch-Jozsa algorithm arguably solves an artificial problem,
Grover’s algorithm solves a canonical search problem: This time, the
task is to find, given an arbitrary Boolean function f : {0, 1}n → {0, 1},
an input x with f (x) = 1 (or to determine that there is no such input).
Classically, there is no better way than to test each input, which requires
2n queries to f in the worst case. Grover showed that if one has access
to a QGA for computing the function

U f : H2n+1 → H2n+1 |x⟩ ⊗ |j⟩ 7→ |x⟩ ⊗ | f (x)⊕ j⟩,

then one can build a quantum algorithm that finds an x with f (x) = 1
in time O(

√
2n).

Our first approach is to apply a Hadamard transformation to |0n⟩ to
obtain a superposition of all inputs and then to apply U f on H⊗n |0n⟩ ⊗
|0⟩. The resulting vector is

ψ :=
1√
2n ∑

x∈{0,1}n

|x⟩ ⊗ | f (x)⟩.

27

3 Quantum Algorithms

Can we measure |ψ⟩ to find an input x with f (x) = 1? For each x with
f (x) = 1, the amplitude of |x1⟩ in |ψ⟩ is 1√

2n . Hence, if for instance
there is only one such x, then a measurement of ψ will very likely not
find this x. The idea of the algorithm is to apply a transformation
on |ψ⟩ that makes the amplitudes of the basis vectors |x1⟩ much larger
while making those of |x0⟩ smaller. After this transformation, with
high probability a measurement of the last results in a basis vector of
the form |x1⟩, i.e. f (x) = 1. If the measurement fails and we obtain a
vector |x0⟩, we just repeat the process.

It turns out that this idea can be made to work using a modified
approach, where we apply U f not to H⊗n |0n⟩ ⊗ |0⟩, but to H⊗n |0n⟩ ⊗
H |1⟩. As in the Deutsch-Jozsa algorithm, the resulting vector is |ψ f ⟩ ⊗
H |1⟩, where

|ψ f ⟩ = ∑
x∈{0,1}n

(−1) f (x)|x⟩√
2n

.

Let Vf the transformation on the first n qubits defined by U f , œ

Vf |x⟩ = (−1) f (x)|x⟩.

For |ψ⟩ = ∑x ax|x⟩, we have

Vf |ψ⟩ = ∑
x : f (x)=0

ax|x⟩ − ∑
x : f (x)=1

ax|x⟩.

For |ψ⟩ = ∑x ax|x⟩, let A := 2−n ∑x ax the average amplitude. Consider
the transformation D that maps |ψ⟩ to the vector ∑x(2A − ax)|x⟩. The
corresponding matrix is

D =




2
2n − 1 2

2n · · · 2
2n

2
2n

2
2n − 1 2

2n

...
. . .

...
2
2n

2
2n · · · 2

2n − 1




.

To see this, consider a basis vector |y⟩ = ∑x δxy|x⟩ (where δxy = 1 if

28

3.2 Grover’s search algorithm

x = y and δxy = 0 otherwise). The average amplitude of |y⟩ is A = 1
2n .

Hence, D|y⟩ =
(2

2n − 1
)
|y⟩+ ∑x ̸=y

2
2n |x⟩.

Lemma 3.1. D = H⊗n ·Rn · H⊗n with

Rn =




1
−1

−1
. . .

−1


.

Note that Rn can be implemented using O(n) simple gates.

Proof. Consider the matrix

R′ = Rn + In =




2
0

. . .
0


.

We claim that

H⊗n ·R′
n · H⊗n =

2
2n




1 1 ··· 1
1 1 ··· 1
...

...
. . .

...
1 1 ··· 1


,

i.e. H⊗n ·R′
n · H⊗n |x⟩ = 2

2n ∑y |y⟩ for all x ∈ {0, 1}n:

|x⟩ H⊗n

7−→ 1√
2n ∑

z
(−1)x·z|z⟩

R′
n7−→ 1√

2n ∑
z
(−1)x·zR′

n|z⟩ =
2√
2n

|0⟩

H⊗n

7−→ 2
2n ∑

y
|y⟩.

Finally,

H⊗n ·Rn · H⊗n = H⊗n(R′
n − In)H⊗n

= H⊗n ·R′
n H⊗n −H⊗n · In ·H⊗n

= H⊗n ·R′
n H⊗n − In

= D. q.e.d.

29

3 Quantum Algorithms

For a given function f : {0, 1}n → {0, 1}, Grover’s search algorithm
iterates the Grover operator G := D · Vf sufficiently often on input H⊗n |0⟩
in order to magnify the amplitudes of the basis vectors |x⟩ with f (x) = 1.
But what do we mean by sufficiently often?

Consider the sets T = {x : f (x) = 1} and F = {x : f (x) = 0}. Af-
ter r iterations of G, the resulting vector will be of the form |ψr⟩ =

tr ∑x∈T |x⟩ + fr ∑x∈F |x⟩ with average amplitude Ar = 1
2n (−tr|T| +

fr(2n − |T|)). Now,

|ψr+1⟩ = G|ψr⟩

= DVf

(
tr ∑

x∈T
|x⟩+ fr ∑

x∈F
|x⟩
)

= D
(
− tr ∑

x∈T
|x⟩+ fr ∑

x∈F
|x⟩
)

= (2Ar + tr) ∑
x∈T

|x⟩+ (2Ar − fr) ∑
x∈F

|x⟩.

Hence,

tr+1 = 2Ar + tr =
(

1 − 2|T|
2n

)
tr +

(
2 − 2|T|

2n

)
fr;

fr+1 = 2Ar − fr = −2|T|
2n tr +

(
1 − 2|T|

2n

)
fr.

This means that the coefficients tr and fr satisfy the following recursion:

(
tr+1

fr+1

)
=

(
1 − δ 2 − δ

−δ 1 − δ

)(
tr

fr

)
, (3.1)

where δ = 2|T|
2n .

To compute the effect of the iterated application of G on H⊗n |0n⟩,
we have to solve (3.1) under the initial condition t0 = f0 = 1√

2n . Since

G is unitary, we have ∥G|ψ⟩∥ = ∥ψ∥, i.e. |T|t2
r + (2n − |T|) f 2

r = 1
for all r ∈ N. Hence, there exist ϑr such that tr = 1√

|T| sin ϑr and

fr =
1√

2n−|T| cos ϑr.

The Grover operator G can be interpreted geometrically as a rota-

30

3.2 Grover’s search algorithm

tion in the 2-dimensional space that is generated by the vectors

|φ+⟩ = 1√
|T| ∑

x∈T
|x⟩,

|φ−⟩ = 1√
2n − |T| ∑

x∈F
|x⟩.

We have

|ψ0⟩ =
1√
2n ∑

x
|x⟩

=

√
|T|
2n |φ+⟩+

√
2n − |T|

2n |φ−⟩

= sin ϑ0 |φ+⟩+ cos ϑ0 |φ−⟩.

Now, the Grover operator applied first performs a reflection across |φ−⟩
followed by a reflection across |ψ0⟩. The resulting operation is a rotation
by 2ϑ0 towards |φ+⟩. Hence, ϑr = (2r + 1)ϑ0 for all r ∈ N.

In order for the final measurement to yield |x⟩ with x ∈ T, we
need that ϑr ≈ π

2 (so that |ψr⟩ is close to |φ+⟩). Solving the equation

(2r + 1)ϑ0 = π
2 , we obtain r = π

4ϑ0
− 1

2 . Hence, for ϑ0 ≈ sin ϑ0 =
√

|T|
2n ,

we can expect that r =
⌊

π
4

√
2n

|T|
⌋

iterations suffice to find a solution
with high probability. More precisely, we have the following theorem.

Theorem 3.2. Let f : {0, 1}n → {0, 1} and m := |{x : f (x) = 1}| such
that 0 < m ≤ 3

4 · 2n, and let ϑ0 < π
3 such that sin ϑ0 = m

2n . After⌊
π

4ϑ0

⌋
iterations of G on |ψ0⟩ = 1√

2n ∑x∈{0,1}n |x⟩, a measurement of
the resulting vector yields a basis vector |x⟩ such that f (x) = 1 with
probability ≥ 1

4 .

Proof. For |ψr⟩ = sin((2r + 1)ϑ0) |φ+⟩ + cos((2r + 1)ϑ0) |φ−⟩, we de-
note by p(r) := sin2((2r + 1)ϑ0) the probability of a projection
onto |φ+⟩. (This is precisely the probability with which a measure-
ment of |ψr⟩ results in a basis vector |x⟩ such that f (x) = 1.) Let
δ ∈ (0, 1

2] such that
⌊

π
4ϑ0

⌋
= π

4ϑ0
− 1

2 + δ. Since |2δϑ0| ≤ |ϑ0| ≤ π
3 , we

31

3 Quantum Algorithms

have

p
(⌊ π

4ϑ0

⌋)
= sin2

(⌊ π

4ϑ0

⌋)
ϑ0

= sin2
(π

2
+ 2δϑ0

)

≥ sin2
(π

2
− π

3

)
=

1
4

. q.e.d.

Finally, we can state Grover’s search algorithm. Given a QGA
for the operator Vf defined by Vf |x⟩ = (−1) f (x)|x⟩ and for known
m := |{x : f (x) = 1}|, the algorithm determines an input x such that
f (x) = 1 by the following procedure:

if m ≥ 3
4 · 2n then

|ψ⟩ := H⊗n |0n⟩
else

r :=
⌊

π
4ϑ0

⌋
for 0 ≤ ϑ0 ≤ π

3 with sin2 ϑ0 = m
2n

|ψ⟩ := Gr H⊗n |0n⟩
end if
measure |ψ⟩ to obtain a basis vector |x⟩
output x

If m ≥ 3
4 · 2n, the algorithm finds x such that f (x) = 1 with

probability ≥ 3
4 since |ψ⟩ is a uniform superposition of all basis vectors.

Otherwise, Theorem 3.2 applies, and the algorithm finds x such that
f (x) = 1 with probability ≥ 1

4 .

For m = 1 and for large n, we have
⌊

π
4ϑ0

⌋
≈ π

4

√
2n (since sin2 ϑ0 ≈

ϑ2
0 = 1

2n)). Hence, in this case, O(
√

2n) calls to Vf suffice to find an
input x such that f (x) = 1 with probability ≥ 1

4 , whereas classical
randomised algorithms need to evaluate f at O(2n) points to find such
an x with the same probability of success.

Another interesting special case is when one fourth of the inputs
are positive instances, i.e. if m = 1

4 · 2n. Recall that after r iterations of G
the resulting state is

|ψr⟩ = sin(2r + 1)ϑ0 |φ+⟩+ cos(2r + 1)ϑ0 |φ−⟩.

32

3.2 Grover’s search algorithm

For m = 1
4 · 2n, we have sin2 ϑ0 = 1

4 , and therefore ϑ0 = π
6 . After one

iteration of G, the resulting state is |ψ1⟩ = sin π
2 |φ+⟩+ cos π

2 |φ−⟩ =
|φ+⟩ and a measurement will surely result in a basis vector x such that
f (x) = 1.

In typical applications, the number m of positive instances is not
known. How can we modify the algorithm such that it also finds a
solution with good probability in this case?

Lemma 3.3. For all α ∈ R and all m ∈ N:

m−1

∑
r=0

cos(2r + 1)α =
sin 2mα

2 sin α
.

In particular, sin 2α = 2 sin α cos α, and cos 2α = 1 − 2 sin2 α.

We can now state Grover’s search algorithm for unknown m:

choose x ∈ {0, 1}n uniformly at random
if f (x) = 1 then

output x
else

choose r ∈ {0, 1, . . . , ⌊
√

2n⌋} uniformly at random
|ψ⟩ := Gr H⊗n |0n⟩
measure |ψ⟩ to obtain a basis vector |x⟩
output x

end if

Clearly, if m ≥ 3
4 · 2n, then the algorithm returns x such that

f (x) = 1 with probability ≥ 3
4 . Hence, assume now that m < 3

4 · 2n,
and set t := ⌊

√
2n⌋ + 1. What is the probability that the algorithm

outputs a good x? We have already seen that the probability of finding a
good x after r iterations of G is sin2(2r + 1)ϑ0. Now, since r is chosen
uniformly at random from {0, 1, . . . , t − 1}, the probability that the
algorithm outputs a good x is

1
t

t−1

∑
r=0

sin2(2r + 1)ϑ0

33

3 Quantum Algorithms

=
1
2t

t−1

∑
r=0

(
1 − cos(2r + 1)2ϑ0) (since sin2 α = (1 − cos 2α)/2)

=
1
2
− 1

2t

t−1

∑
r=0

cos(2r + 1)2ϑ0

=
1
2
− sin 4tϑ0

4t sin 2ϑ0
(by Lemma 3.3).

For 0 < m ≤ 3
4 · 2n and t = ⌊

√
2n⌋+ 1, we have

sin 2ϑ0 = 2 sin ϑ0 cos ϑ0

= 2
√

m
2n ·

√
2n − m

2n

≥ 2
√

m
2n ·

√
1
4
=

√
m
2n

≥
√

1
2n

and therefore

t ≥ 1
sin 2ϑ0

.

Hence, the algorithm finds a good x with probability

1
2
− sin 4tϑ0

4t sin 2ϑ0
≥ 1

2
− sin 4tϑ0

4
≥ 1

2
− 1

4
=

1
4

.

To sum up, we have the following theorem.

Theorem 3.4 (Grover). Given a function f : {0, 1}n → {0, 1}, f ̸≡ 0, and
a QGA for Vf : H2n → H2n : |x⟩ 7→ (−1) f (x)|x⟩, there exists a quantum
algorithm that finds an x such that f (x) = 1 with probability ≥ 1

4 by
evaluating Vf at most O(

√
2n) times.

3.3 Fourier transformation

In the following, let (G,+) be an abelian group, and let C∗ = (C\ {0}, ·).
A character of (G,+) is a homomorphism χ : (G,+) → C∗. For two

34

3.3 Fourier transformation

characters χ1, χ2, their product χ1 · χ2, defined by

χ1 · χ2 : (G,+) → C∗ : g 7→ χ1(g) · χ2(g)

is also a character. In fact the set of characters of (G,+) together with
this operation forms a new group, called the dual group and denoted by
(Ĝ, ·).

Lemma 3.5. Let (G,+) be a finite abelian group with n elements. Then
χ(g)n = 1 for all g ∈ G, i.e. χ(g) is an nth root of unity. Hence,
χ(g) = e2iπk/n for some k ∈ {0, 1, . . . , n − 1}.

Proof. For m ∈ N and g ∈ G, let

m · g := g + · · ·+ g︸ ︷︷ ︸
m times

.

The set {0, g, 2 · g, . . . } forms a subgroup of (G,+). Let

k = min{m > 0 : m · g = 0}

be the order of this subgroup. Since the order of a subgroup divides
the order of the group, we have n · g = n

k · k · g = n
k · 0 = 0. Hence,

χ(g)n = χ(n · g) = χ(0) = 1. q.e.d.

Example 3.6. Consider the cyclic group (Zn,+), where Zn =

{0, 1, . . . , n − 1}, with addition modulo n. For each y ∈ Zn, define

χy : Zn → C∗ : x 7→ e2πi xy
n .

We claim that χy is a character of (Zn,+), i.e. a group homomorphism
from (Zn,+) to (C∗, ·). Let x, x′ ∈ Zn. We have:

χy(x + x′) = e2πi x+x′
n

= e2πi xy
n e2πi x′y

n

= χy(x) · χy(x′)

35

3 Quantum Algorithms

Now consider y ̸= y′ ∈ Zn. We have

χy(1) = e2πi y
n ̸= e2πi y′

n = χy′ (1).

Hence, also χy ̸= χy′ . On the other hand, let χ be a character of
(Zn,+). By Lemma 3.5, χ(1) = e2iπy/n for some y ∈ Zn. But then
χ = χy. Finally, note that χy · χy′ = χy+y′ . Hence, the mapping
Zn → Ẑn : y 7→ χy is an isomorphism between (Zn,+) and the dual
group (Ẑn, ·), i.e. (Zn,+) ∼= (Ẑn, ·).
More generally, we have the following theorem.

Theorem 3.7. Let (G,+) be a finite abelian group. Then (G,+) ∼= (Ĝ, ·).

Proof. Every abelian group is (isomorphic to) a direct sum (or a direct
product if the group operation is understood as multiplication) of cyclic
groups:

(G,+) = (Zn1 ,+)⊕ · · · ⊕ (Znk ,+).

We already know that (Zn,+) ∼= (Ẑn, ·) and therefore also

(G,+) ∼= (Ẑn1 , ·)× · · · × (Ẑnk , ·).

To establish that (G,+) ∼= (Ĝ, ·), it remains to show that there exists an
isomorphism

φ : (Ẑn1 , ·)× · · · × (Ẑnk , ·) → (Ĝ, ·).

For each g ∈ G there exists a unique decomposition into its components:
g = g1 + · · ·+ gk with gi ∈ Zni . For χ1 ∈ Ẑn1 , . . . , χk ∈ Ẑnk , we define
(φ(χ1, . . . , χk))(g) := χ1(g1) · · · χk(gk). Clearly, φ is a homomorphism.
It remains to show that φ is a bijection.

Let us first prove that φ is injective: Let (χ1, . . . , χk) ̸= (χ′
1, . . . , χ′

k),
χ = φ(χ1, . . . , χk), and χ′ = φ(χ′

1, . . . , χ′
k). There exists i with χi ̸= χ′

i ;
in particular, there exists gi ∈ Zni with χi(gi) ̸= χ′

i(gi). We have
χ(gi) = χi(gi) ̸= χ′

i(gi) = χ′(gi) and therefore also χ ̸= χ′.
It remains to prove that φ is surjective: Let χ ∈ Ĝ. For each

i = 1, . . . , k, χ induces a character χi ∈ Ẑni by setting χi(gi) = χ(gi) for

36

3.3 Fourier transformation

all gi ∈ Zni . For all g ∈ G, we have:

χ(g) = χ(g1 + · · ·+ gk)

= χ(g1) · · · χ(gk)

= χ1(g1) · · · χk(gk)

= (φ(χ1, . . . , χk))(g)

Hence, χ = φ(χ1, . . . , χk). q.e.d.

Example 3.8. Consider the m-fold direct sum of (Z2,+),

(Zm
2 ,+) = (Z2,+)⊕ · · · ⊕ (Z2,+)︸ ︷︷ ︸

m times

.

We already know that (Z2,+) has two characters, namely χ0 : x 7→ 1
and χ1 : x 7→ eπix = (−1)x. The characters of (Zm

2 ,+) are of the form

χy : x = x1 . . . xm 7→ (−1)x·y = (−1)x1y1+···+xmym ,

where y = y1 . . . ym ∈ {0, 1}m.

The set of all functions f : G → C from a finite abelian group (G,+)

to C naturally forms a vector space V over C. If G = {g1, . . . , gn}, then
this vector space is isomorphic to Cn, where the isomorphism maps a
function f to the tuple (f (g1), . . . , f (gn)), and the functions ei defined
by

ei(gj) =





1 if i = j,

0 otherwise,

form a basis of V. The vector space V can be equipped with an inner
product by setting

⟨ f | f ′⟩ :=
n

∑
i=1

f (gi)
∗ · f ′(gi).

As usual, this inner product gives rise to a norm ∥·∥ on V, namely ∥ f ∥ =√
⟨ f | f ⟩. Since ⟨ei | ei⟩ = 1 and ⟨ei | ej⟩ = 0 for i ̸= j, the set {e1, . . . , en}

37

3 Quantum Algorithms

is, in fact, an orthonormal basis of V. The characters of (G,+) give
rise to a different orthonormal basis of V. For Ĝ = {χ1, . . . , χk}, set
Bi := 1√

n χi for all i = 1, . . . , n.

Theorem 3.9. Let (G,+) be a finite abelian group with characters
χ1, . . . , χn, and let Bi := 1/

√
n · χi for all i = 1, . . . , n. The vectors

B1, . . . , Bn form an orthonormal basis of V = CG, called the Fourier
basis.

Proof. Since |{B1 . . . , Bn}| = |{e1, . . . , en}|, it suffices to show that

⟨χi | χj⟩ =





n if i = j,

0 otherwise.

For each g ∈ G and for all χ ∈ Ĝ, by Lemma 3.5, we have χ(g)n = 1
and therefore |χ(g)| = 1. Hence, χ(g)∗ · χ(g) = |χ(g)|2 = 1 and
χ(g)∗ = χ(g)−1. We have:

⟨χi | χj⟩ =
n

∑
k=1

χi(gk)
∗ · χj(gk)

=
n

∑
k=1

χi(gk)
−1 · χj(gk)

=
n

∑
k=1

(χ−1
i · χj)(gk).

For i = j, we have χ−1
i · χj = 1 (the trivial character) and therefore

⟨χi | χj⟩ = n. For i ̸= j, consider the character χ := χ−1
i · χj. Since

χi ̸= χj, we have χ ̸= 1, i.e. there exists g ∈ G with χ(g) ̸= 1. Consider
the mapping hg : G → G : g′ 7→ g′ + g. Since G is finite, this mapping is
not only injective, but also surjective. Hence,

⟨χi | χj⟩ =
n

∑
k=1

χ(gk)

=
n

∑
k=1

χ(g + gk)

38

3.3 Fourier transformation

= χ(g)
n

∑
k=1

χ(gk)

= χ(g) · ⟨χi | χj⟩.

Since χ(g) ̸= 1, we must have ⟨χi | χj⟩ = 0. q.e.d.

Let G = {g1, . . . , gn}, Ĝ = {χ1, . . . , χn}, and consider the matrix
X = (χj(gi))1≤i,j≤n and its conjugate transpose X∗ = ((χi(gj)

∗))1≤i,j≤n.
We claim that X∗ · X = n · I. To see this, consider the entry at position i, j:

(X∗ · X)ij =
n

∑
k=1

X∗
ik · Xkj

=
n

∑
k=1

χi(gk)
∗ · χj(gk)

= ⟨χi | χj⟩

=





n if i = j,

0 otherwise.

It follows that also X · X∗ = n · I, i.e.

n

∑
k=1

χk(gi) · χk(gj)
∗ =





n if i = j,

0 otherwise.
(3.2)

Corollary 3.10. Let (G,+) be a finite abelian group, g ∈ G and χ ∈ Ĝ.

(a) ∑n
k=1 χ(gk) =





n if χ = 1,

0 otherwise.

(b) ∑n
k=1 χk(g) =





n if g = 0,

0 otherwise.

Proof. To prove (a), note that

n

∑
k=1

χ(gk) = ⟨1 | χ⟩ =





n if χ = 1,

0 otherwise.

39

3 Quantum Algorithms

To prove (b), it suffices to apply (3.2) with gi = g and gj = 0:

n

∑
k=1

χk(g) =
n

∑
k=1

χk(g) · χk(0)
∗ =





n if g = 0,

0 otherwise.
q.e.d.

Example 3.11. For G = Zn, the characters are the mappings χy, y ∈ Zn,
with χy(x) = e2πixy/n. Hence,

∑
y∈Zn

e2πi xy
n =





n if x = 0,

0 otherwise.

For G = Zm
2 , the characters are the mappings χy, y ∈ Zm

2 , with
χy(x) = (−1)x·y. Hence,

∑
y∈Zn

(−1)x·y =





2m if x = 0,

0 otherwise.

Finally, we can define the Fourier transformation. By Theorem 3.9,
the vectors Bi = 1/

√
n · χi form a basis of CG. The discrete Fourier

transform of f is the function f̂ that maps the elements of G to the
coefficients in the unique representation of f according to this basis.

Definition 3.12. Let (G,+) be a finite abelian group with elements
g1, . . . , gn, and let B1, . . . , Bn be the Fourier basis of CG. Given a function
f = f̂1 · B1 + · · ·+ f̂n · Bn ∈ CG, its discrete Fourier transform (DFT) is the
function f̂ : G → C : gi → f̂i.

How can we compute the DFT of a given function f ? It turns
out that f̂ can be computed via the conjugate transpose of the matrix
X = (χj(gi))1≤i,j≤n as defined above.

Theorem 3.13. Let (G,+) be a finite abelian group with elements
g1, . . . , gn and characters χ1, . . . , χn, and let X = (χj(gi))1≤i,j≤n. With
respect to the standard basis, for any function f : G → C, we have
f̂ = 1/

√
n · X∗ · f , i.e.

40

3.3 Fourier transformation




f̂ (g1)

f̂ (g2)
...

f̂ (gn)




=
1√
n
·




χ1(g1)
∗ · · · χ1(gn)∗

χ2(g1)
∗ · · · χ2(gn)∗

...
...

χn(g1)
∗ · · · χn(gn)∗







f (g1)

f (g2)
...

f (gn)




.

Proof. Since {B1, . . . , Bn} is an orthonormal basis, we have

⟨Bi | f ⟩ =
n

∑
j=1

⟨Bi | f̂ j · Bj⟩ =
n

∑
j=1

f̂ j · ⟨Bi | Bj⟩ = f̂i

and therefore

f̂ (gi) = f̂i = ⟨Bi | f ⟩ = ⟨1/
√

n · χi | f ⟩ = 1√
n

n

∑
k=1

χi(gk)
∗ · f (gk).

q.e.d.

Corollary 3.14 (Parseval’s theorem). Let f : G → C and f̂ the DFT of f .
Then ∥ f̂ ∥ = ∥ f ∥.

Proof. Since X∗ · X = n · I, the matrix 1/
√

n · X∗ is unitary. Hence,
∥ f̂ ∥ = ∥1/

√
n · X∗ · f ∥ = ∥ f ∥. q.e.d.

The mapping f 7→ 1/
√

n · X · f (wrt. the standard basis) is called
the inverse Fourier transform.

Example 3.15. For G = Zn the characters are χy, y ∈ Zn, with χy(x) =
e2πixy/n. Hence, the Fourier transform of f : Zn → C is

f̂ : Zn → C : x 7→ 1√
n ∑

y∈Zn

e−2πixy/n f (y),

and its inverse Fourier transform is the function

f̃ : Zn → C : x 7→ 1√
n ∑

y∈Zn

e2πixy/n f (y).

For G = Zm
2 the characters are χy, y ∈ Zm

2 , with χy(x) = (−1)x·y. The

41

3 Quantum Algorithms

Fourier transform of f : Zm
2 → C is

f̂ : Zm
2 → C : x 7→ 1√

2m ∑
y∈Zm

2

(−1)x·y f (y).

The same function is also the inverse Fourier transform of f .

3.4 Quantum Fourier transformation

Let (G,+) be a finite abelian group with elements g1, . . . , gn and charac-
ters χ1, . . . , χk, and consider the n-dimensional Hilbert space with basis
{|g1⟩, . . . , |gn⟩}. Every state |ψ⟩ of HG can be described by the function
f : G → C with |ψ⟩ = ∑g∈G f (g) · |g⟩, i.e. f (g) = ⟨g | ψ⟩.

Definition 3.16. Let (G,+) be a finite abelian group; G = {g1, . . . , gn}
and Ĝ = {χ1, . . . , χk}. The mapping

QFT: HG → HG :
n

∑
i=1

f (gi) · |gi⟩ 7→
n

∑
i=1

f̂ (gi) · |gi⟩

is called the quantum Fourier transformation (QFT). In particular,

QFT |g⟩ = 1√
n

n

∑
k=1

χk(g)∗ · |gk⟩

for all g ∈ G.

Lemma 3.17. QFT is a unitary transformation.

Proof. Follows from Corollary 3.14. q.e.d.

How can we implement QFT by a QGA with elementary gates?
To do this, we will follow a bottom-up process. Let G = {g1, . . . , gm}
and G′ = {g′1, . . . , g′n} with dual groups Ĝ = {χ1, . . . , χm} and Ĝ′ =
{χ′

1, . . . , χ′
n}. From G and G′ we can build a new group G ⊕ G′ =

{g + g′ : g ∈ G, g′ ∈ G′}, the direct sum of G and G′. (Formally, the
domain of G ⊕ G′ is the cartesian product of G and G′, and addition is
applied componentwise). The corresponding Hilbert space is HG⊕G′ =

HG ⊗ HG′ with basis vectors |g⟩ ⊗ |g′⟩, g ∈ G, g′ ∈ G′.

42

3.4 Quantum Fourier transformation

By Theorem 3.7, the dual group of G ⊕ G′ is isomorphic to Ĝ × Ĝ′.
Hence, the characters of G ⊕ G′ are χij, 1 ≤ i ≤ m, 1 ≤ j ≤ n, with
χij(g + g′) = χi(g) · χ′

j(g′) for all g ∈ G and all g′ ∈ G′.

How does QFT behave on HG⊕G′? For a basis vector |gi⟩|g′j⟩ =

|gi⟩ ⊗ |g′j⟩, we have

QFT |gi⟩|g′j⟩ =
1√
mn

m

∑
k=1

n

∑
l=1

χij(gk + g′l)
∗ · |gk⟩|g′l⟩

=
1√
mn

m

∑
k=1

n

∑
l=1

(
χi(gk)

∗|gk⟩ ⊗ χj(g′l)
∗|g′l⟩

)

=
(1√

m

m

∑
k=1

χi(gk)
∗|gk⟩

)
⊗
(1√

n

n

∑
l=1

χj(g′l)
∗|gl⟩

)

= QFT |gi⟩ ⊗ QFT |g′j⟩

Example 3.18. Consider the group G = Zm
2 (the m-fold direct product

of Z2). Then QFT on the Hilbert space HG is equivalent to H⊗m since
for all x = x1 . . . xm ∈ {0, 1}m we have

H⊗m |x⟩ =
m⊗

i=1

1√
2
(|0⟩+ (−1)xi |1⟩)

=
1√
2m ∑

y1 ...ym∈{0,1}m

(−1)x1y1+···+xmym · |y⟩

=
1√
2m ∑

y∈{0,1}m

(−1)x·y · |y⟩

= QFT |x⟩.

We are interested in QFT for the group G = Zn, n ∈ N. For this
group, we have QFT |x⟩ = ∑n−1

y=0 e−2πixy/n · |y⟩ for all x ∈ {0, . . . , n − 1}.
If n = p · q with gcd(p, q) = 1, then Zn ∼= Zp × Zq, and QFT on Zn

can be composed from QFT on Zp and QFT on Zq. However, in most
applications no factorisation of n is known, or n = 2m and no two
factors are relatively prime.

For G = Z2m , instead of QFT, let us look at the inverse QFT. For
x = ∑m−1

i=0 xi · 2i ∈ Z2m , we identify the basis vector |x⟩ in HG with the

43

3 Quantum Algorithms

corresponding basis vector in H2m , i.e. |x⟩ = |xm−1 . . . x0⟩. On H2m , the
inverse QFT on G corresponds to the transformation

IQFTm : H2m → H2m : |x⟩ 7→ 1√
2m ∑

y∈Z2m

e2πi·xy/2m · |y⟩.

Lemma 3.19. IQFTm |x⟩ is decomposable for all x ∈ Z2m and all m > 0:

∑
y∈Z2m

e2πi·xy/2m · |y⟩ =
m−1⊗

l=0

(
|0⟩+ eπi·x/2l · |1⟩

)
.

Proof. The proof is by induction on m. For m = 1, the statement is
trivial. Hence, let m > 1 and assume that IQFTm−1 is decomposable.
For all x ∈ Z2m , we have:

∑
y∈Z2m

e2πi·xy/2m · |y⟩

= ∑
z∈Z2m−1

(
e2πi·x·2z/2m · |z0⟩+ e2πi·x(2z+1)/2m · |z1⟩

)

= ∑
z∈Z2m−1

(
e2πi·xz/2m−1 |z0⟩+ e2πi·xz/2m−1

e2πi·x/2m |z1⟩
)

=
(

∑
z∈Z2m−1

e2πi·xz/2m−1 · |z⟩
)
⊗
(
|0⟩+ e2πi·x/2m · |1⟩

)

=
m−2⊗

l=0

(
|0⟩+ eπi·x/2l |1⟩

)
⊗
(
|0⟩+ eπi·x/2m−1 · |1⟩

)

=
m−1⊗

l=0

(
|0⟩+ eπi·[x]/2l · |1⟩

)
. q.e.d.

Let x = ∑2m

i=0 xi · 2i ∈ Z2m and consider the operation of IQFTm on
the lth qubit:

|xl⟩ 7→
1√
2

(
|0⟩+ eπi·x/2l · |1⟩

)
.

We have

44

3.4 Quantum Fourier transformation

eπi·x/2l
=

m−1

∏
k=0

eπi·xk/2l−k
=

l

∏
k=0

eπi·xk/2l−k
= (−1)xl ∏

k<l
xk=1

eπi/2l−k
.

Hence, IQFTm operates on the lth qubit like a Hadamard transformation,
followed by a phase shift that depends on the qubits |xk⟩ for k < l.
Formally, for j ∈ N define

Rj =

(
1 0

0 eπi/2j

)
.

In particular, R1 = S and R2 = T. Then

IQFTm |x⟩ =
m−1⊗

l=0

(
∏
k<l

xk=1

Rl−k

)
H |xl⟩

for all x ∈ {0, 1}m. It follows that we can implement IQFTm using
O(m2) Hadamard and controlled Rj gates.

Theorem 3.20. For all m > 0, IQFTm can be implemented using O(m2)

Hadamard and controlled Rj gates, j = 1, . . . , m − 1.

QFT and periodical functions. Let f : Zn → C be a function with
period p ∈ Zn, i.e. f (m + p) = f (m) for all m ∈ Zn. For all x ∈ Zn, we
have

f̂ (x) =
1√
n ∑

y∈Zn

e−2πixy/n f (y)

=
1√
n ∑

y∈Zn

e−2πixy/n f (y + p)

= e2πixp/n · 1√
n ∑

y∈Zn

e−2πix(y+p)/n f (y + p)

= e2πixp/n · 1√
n ∑

y∈Zn

e−2πixy/n f (y)

= e2πixp/n · f̂ (x)

Hence, if f̂ (x) ̸= 0, then e2πixp/n = 1 and therefore n | xp.

45

3 Quantum Algorithms

We conclude that the Fourier transform of a function with period p
can only take non-zero values on arguments x of the form x = k · n/p.

3.5 Shor’s factorisation algorithm

We can finally turn to Shor’s algorithm for factoring a composite num-
ber n, i.e. the task to, find given n, numbers p, q < n such that n = p · q.
The general idea in almost all good factorisation algorithms is to find
numbers b, c < n such that

b2 ≡ c2 (mod n), (3.3)

b ̸≡ ± c (mod n). (3.4)

We then have (b + c)(b − c) ≡ 0 (mod n), but b + c ̸≡ 0 (mod n) and
b − c ̸≡ 0 (mod n). Hence, b + c contains a factor of n, which can be
extracted by computing gcd(b + c, n) in polynomial time, e.g. using
Euklid’s algorithm.

Shor’s algorithm computes

r := ordn(a) = min{k > 0 : ak = 1 (mod n)}

for a randomly chosen a < n with gcd(a, n) = 1. If we are lucky, then
r is even and ar/2 ̸≡ −1 (mod n). In this case, b = ar/2 and c = 1
satisfy (3.3) and (3.4).

What is the probability that we are lucky? We can assume without
loss of generality that n is neither even nor a prime power because it
is easy to decide whether n = 2l · m or n = ak and to compute suitable
numbers l, m or a, k if so.

Lemma 3.21. Let n ∈ N be neither even nor a prime power, and let
Z∗

n = {a ∈ Zn : gcd(a, n) = 1}. Then

Pr
a∈Z∗

n

[ordn(a) is even and aordn(a)/2 ̸≡ −1 (mod n)] ≥ 9
16

.

To prove this lemma, we need to make a small digression into
number theory.

46

3.5 Shor’s factorisation algorithm

3.5.1 Number theory in a nutshell

For n ∈ N, let Z∗
n the set of all a ∈ Zn with gcd(a, n) = 1; we denote

by φ(n) the cardinality of Z∗
n. When equipped with multiplication

mod n, the set Z∗
n forms an abelian group.

For prime numbers p, we have Z∗
p = {1, 2, . . . , p − 1} and φ(p) =

p − 1. In this case, the group (Z∗
p, ·) is isomorphic to the cyclic group

(Zp−1,+). More generally, if n = pk is a prime power, then

Z∗
n = {a ∈ Zn : a ̸= 0, p, 2p, . . . , (pk−1 − 1)p}

and φ(n) = pk − pk−1 = pk−1(p − 1).

Theorem 3.22. Let n = pk for a prime p > 2 and k ≥ 1. Then the group
(Z∗

n, ·) is cyclic.

Proof. We prove that there exists an element b ∈ Z∗
n with ordn(b) =

φ(n) = pk−1(p − 1). We prove this by establishing the following three
facts:

(1) there exists b ∈ Z∗
n with ordn(b) = p − 1;

(2) ordn(1 + p) = pk−1;

(3) if (G, ·) is an abelian group and g, h ∈ G with ordG(g) and ordG(h)
being relatively prime, then ordG(g · h) = ordG(g) · ordG(h).

It follows that ordn(b · (1 + p)) = φ(n).
We start by proving (1). Consider the natural homomorphism

f : Z∗
n → Z∗

p : a 7→ a (mod p).

Since Z∗
p is cyclic and f is surjective, there exists a ∈ Z∗

n with
ordp(f (a)) = p − 1. Let r := ordn(a). Since ar ≡ 1 (mod pk), we
have f (a)r = 1 (mod p) and therefore r = l(p − 1) for some l ∈ N. Set
b := al . We have bp−1 = ar ≡ 1 mod n. On the other hand, whenever
bs ≡ 1 (mod n), then (p − 1) | s because if bs ≡ 1 (mod n), then also
al·s ≡ 1 mod n and therefore r = l(p− 1) | l · s. Hence, ordn(b) = p− 1.

To prove (2), we first prove that for all m > 0 we have (1 + p)pm
=

1 + λpm+1 for some λ ∈ N such that p ∤ λ. We prove this by induction

47

3 Quantum Algorithms

over m. For m = 1, we have

(1 + p)p =
p

∑
i=0

(
p
i

)
· pi

= 1 + p2 +
p

∑
i=3

(
p
i

)
· pi (since p > 2)

= 1 + p2 + p3 ·
p

∑
i=3

(
p
i

)
· pi−3

︸ ︷︷ ︸
l

= 1 + p2(1 + l · p),

which proves the statement since p ∤ (1 + l · p).

Now let m > 1 and assume that the statement holds for m − 1. We
have:

(1 + p)pm
= (1 + p)pm−1·p

= (1 + λ · pm)p

=
p

∑
i=0

(
p
i

)
λi pmi

= 1 + λpm+1 +
p

∑
i=2

(
p
i

)
λi pmi

= 1 + λpm+1 + pm+2 ·
p

∑
i=2

(
p
i

)
λi pm(i−1)−2

︸ ︷︷ ︸
l

= 1 + pm+1(λ + lp).

Since p ∤ λ, we also have p ∤ (λ + lp), which proves the statement.

It follows that there exist λ1, λ2 ∈ N with p ∤ λ1 and p ∤ λ2 such
that

(1 + p)pk−1
= 1 + λ1 · pk ≡ 1 (mod n);

(1 + p)pk−2
= 1 + λ2 · pk−1 ̸≡ 1 (mod n).

48

3.5 Shor’s factorisation algorithm

Hence, ordn(1 + p) | pk−1 but ordn(1 + p) ∤ pk−2. Thus, ordn(1 + p) =
pk−1.

It remains to prove (3). Let r = ordG(g) and s = ordG(h) with
gcd(r, s) = 1. Clearly, (gh)rs = 1 and therefore ordG(gh) | rs. On the
other hand, assume that (gh)t = 1. We have 1r = (gh)ts = gts · hts =

gts · 1t = gts and therefore r | ts. Since gcd(r, s) = 1, this implies r | t,
and an analogous argument shows that s | t. Hence, also rs | t, which
proves that ordG(gh) = rs. q.e.d.

Remark 3.23. Theorem 3.22 does not hold for p = 2. For instance, we
have Z∗

8 = {1, 3, 5, 7} with 32 ≡ 52 ≡ 72 ≡ 1 (mod n). Hence, the
group (Z∗

8 , ·) is isomorphic to (Z2 × Z2,+), the Klein four-group.

Let n be an odd prime power, i.e. n = pe for some prime p > 2.
Since Z∗

n is cyclic, there exists a generator g of this group, i.e. Z∗
n =

{g, g2, . . . , gφ(n)}. Moreover, φ(n) = φ(pe) = pe−1(p − 1) = 2d · u for
d ≥ 1 and an odd number u.

Lemma 3.24. Let n = pe, p > 2, φ(n) = 2d · u with 2 ∤ u, and let g be a
generator of Z∗

n. Then i ∈ N is odd if and only if 2d | ordn(gi).

Proof. (⇒) Let i ∈ N be odd. We have gi·ordn(gi) ≡ 1 (mod n) and
therefore φ(n) | i · ordn(gi). Since φ(n) = 2d · u and i is odd, this
implies that 2d | ordn(gi).

(⇐) Let i ∈ N be even. We have gi·φ(n)/2 = gφ(n)·i/2 ≡ 1 (mod n)
and therefore ordn(gi) | φ(n)/2. Since 2d ∤ φ(n)/2, this implies that
2d ∤ ordn(gi). q.e.d.

Corollary 3.25. Let n = pe, p > 2, and φ(n) = 2d · u with 2 ∤ u. Then

Pr
a∈Z∗

n

[2d | ordn(a)] =
1
2

.

Finally, we can prove Lemma 3.21.

Proof (of Lemma 3.21). Let n ∈ N be neither even nor a prime power.
Hence, n = pe1

1 · · · pek
r , k > 1 for primes pi > 2 such that pi ̸= pj for

49

3 Quantum Algorithms

i ̸= j. The Chinese remainder theorem tells us that the mapping

Z∗
n → Z∗

pe1
1
× · · · × Zp

ek
k

: a 7→ (a mod pe1
1 , . . . , a mod pek

k)

is an isomorphism. In particular, we have

φ(n) =
k

∏
i=1

φ(pei
i) =

k

∏
i=1

pei−1
i (pi − 1).

Moreover, for a ∈ Z∗
n we have ordn(a) = lcm(ordpe1

1
(a), . . . , ordp

ek
k
(a))

because, by the Chinese remainder theorem, ar ≡ 1 (mod n) is equiv-
alent to ar ≡ 1 (mod pei

i) for all i, and the latter holds if and only if
ordpei

i
(a) | r.

By the Chinese remainder theorem, a random choice of a ∈ Z∗
n

corresponds to a random choice of a1, . . . , ak with ai ∈ Zpei
i

. For a ∈ Z∗
n,

let ri = ordpei
i
(a). Then ordn(a) = gcd(r1, . . . , rk) is odd if and only if

each ri is odd. It follows from Corollary 3.25 that Pra∈Z∗
n
[ri is odd] ≤ 1

2
and Pra∈Z∗

n
[ordn(a) is odd] ≤ 1

2k .

Assume now that r = ordn(a). If ar/2 ≡ −1 (mod n), then n |
ar/2 + 1. But then also pei

i | ar/2 + 1 and therefore ar/2 ≡ −1 (mod pei
i)

for all i = 1, . . . , k. Since ari ≡ 1 (mod pei
i) and pi > 2, this implies that

ri ∤ r
2 for all i. For r = 2d · u (where u is odd), this means that 2d | ri for

all i = 1, . . . , k. Hence,

Pr
a∈Z∗

n

[aordn(a)/2 ≡ −1 (mod n) | ordn(a) is even]

≤ Pr
a∈Z∗

n

[2d | ordpei
i
(a) for all i]

=
1
2k ,

where the last equality follows from Corollary 3.25. Finally,

Pr
a∈Z∗

n

[2 | ordn(a) and aordn(a)/2 ̸≡ −1 (mod n)]

= Pr
a∈Z∗

n

[2 | ordn(a)] · Pr
a∈Z∗

n

[aordn(a)/2 ̸≡ −1 (mod n) | 2 | ordn(a)]

≥ (1 − 1
2k) · (1 −

1
2k)

50

3.5 Shor’s factorisation algorithm

≥ 3
4
· 3

4
≥ 9

16
q.e.d.

3.5.2 Factoring and QFT

To sum up, we can reduce factoring to the problem of computing,
given a number n ∈ N that is neither odd nor a prime power, the
order ordn(a) of a ∈ Z∗

n. The number r = ordn(a) is the period of the
function

f : Z → Zn : x 7→ ax mod n

since f (x + r) ≡ ax+r ≡ ax · ar ≡ ax (mod n). We can use QFT to
determine this period! However, QGAs only operate on the Hadamard
space H2m . Hence, we choose a sufficiently large number m ∈ N such
that the period of f occurs in Z2m : in fact, we can always take the
unique number m such that n2 ≤ 2m < 2n2.

We can now give an informal description of Shor’s algorithm.
First, after having randomly chosen a < n, the algorithm computes the
quantum state

|ψ⟩ = 1√
2m ∑

x∈Z2m

|x⟩|ax mod n⟩ ∈ H2m+k ,

where 2k ≤ n < 2k+1. Note that the function x 7→ ax mod n is com-
putable in polynomial time (by a classical circuit) and thus also by a
QGA since for x = ∑m−1

i=0 xi · 2i we have ax ≡ ∏i : xi=1 ai (mod n) where
a0 = a and ai+1 = ai

2 mod n for all i < m.

Since x 7→ ax mod n has period r = ordn(a), we have

|ψ⟩ = 1√
2m

r−1

∑
l=0

sl

∑
q=0

|qr + l⟩|al mod n⟩,

where sl = max{s ∈ N : sr + l < 2m}.

The next step of the algorithm is to apply IQFTm to the first
m qubits of |ψ⟩. The resulting state is

51

3 Quantum Algorithms

|φ⟩ = 1√
2m

r−1

∑
l=0

sl

∑
q=0

1√
2m ∑

y∈Z2m

e2πi·y(qr+l)/2m |y⟩|al mod n⟩

=
1

2m

r−1

∑
l=0

2m−1

∑
y=0

e2πi·yl/2m
sl

∑
q=0

e2πi·yr·q/2m |y⟩|al mod n⟩

Finally, the algorithm performs a measurement on the first m qubits
of |φ⟩, which yields y ∈ Z2m . Then, with some luck, y ≈ k · 2m/r and
gcd(k, r) = 1. The number r can then be extracted using the method of
continued fractions (see below).

Example 3.26. Let n = 15 and a = 7. In this case, it suffices to choose
m = 4 (as opposed to m = 8). Hence,

|ψ⟩ = 1√
16

15

∑
x=0

|x⟩|7x mod 15⟩

=
1
4
(
|0⟩|1⟩+ |1⟩|7⟩+ |2⟩|4⟩+ · · ·+ |15⟩|13⟩

)

=
1
4

((
|0⟩+ |4⟩+ |8⟩+ |12⟩

)
|1⟩

+
(
|1⟩+ |5⟩+ |9⟩+ |13⟩

)
|7⟩

+
(
|2⟩+ |6⟩+ |10⟩+ |14⟩

)
|4⟩

+
(
|3⟩+ |7⟩+ |11⟩+ |15⟩

)
|13⟩

)

=
4

∑
j=0

(15

∑
y=0

f j(y)|y⟩
)
|7j mod 15⟩,

where

f j(y) =





1
4 if y ≡ j (mod 4)

0 otherwise.

Each f j has period 4. Hence, f̂ j(x) ̸= 0 only for x ∈ {0, 4, 8, 12}. For
k = 0, 1, 2, 3, we have

f̂ j(4k) =
1
4

15

∑
y=0

e2πi·4k·y/16 · f j(y)

52

3.5 Shor’s factorisation algorithm

=
1
4

3

∑
l=0

e2πi·4k(4l+j)/16 · 1
4

=
1

16

3

∑
l=0

e2πi·4k(4l+j)/16

=
1

16
· eπi·kj/2

3

∑
l=0

e2πi·kl

=
1

16
· eπi·kj/2

3

∑
l=0

1

=
1
4
· eπi·kj .

Hence,

|φ⟩ = 1
4

((
|0⟩+ |4⟩+ |8⟩+ |12⟩

)
|1⟩

+
(
|0⟩+ i|4⟩ − |8⟩ − i|12⟩

)
|7⟩

+
(
|0⟩ − |4⟩+ |8⟩ − |12⟩

)
|4⟩

+
(
|0⟩ − i|4⟩ − |8⟩+ i|12⟩

)
|13⟩

)
.

With probability 1
4 each, a measurement of the first m qubits of |φ⟩

yields |0⟩, |4⟩, |8⟩ or |12⟩. From |0⟩ and |8⟩, the period 4 = ord15(7)
cannot be extracted. However, for y = 4, 12 we have y = 4k with
gcd(k, 4) = 1, and the period can be extracted.

The period r = 4 is even and 7r/2 = 72 − 4 ̸≡ −1 (mod 15). Hence,
3 = 4 − 1 and 5 = 4 + 1 are identified as factors of 15.

The probability that a measurement of the first m qubits of |φ⟩
returns y ∈ Z2m is

Pr[y] =
1

22m

r−1

∑
l=0

∣∣∣e2πi·yl/2m
sl

∑
q=0

e2πi·yrq/2m
∣∣∣
2

=
1

22m

r−1

∑
l=0

∣∣∣
sl

∑
q=0

e2πi·yrq/2m
∣∣∣
2
.

If r | 2m, i.e. for r = 2s with s ≤ m, we know that Pr[y] ̸= 0 only if

53

3 Quantum Algorithms

y = k · 2m/r. Moreover, all these y occur with probability 1/r because
sl = 2m−s − 1 for all l < r by the choice of sl and

Pr[y] =
r

22m

∣∣∣
2m−s−1

∑
q=0

e2πi·yq/2m−s
∣∣∣
2

=
r

22m

∣∣∣
2m−s−1

∑
q=0

χq(y)
∣∣∣
2

=





r
22m |2m−s|2 if y ≡ 0 (mod 2m−s),

0 otherwise,

=





r
22m · 22m

r2 = 1
r if y = k · 2m/r,

0 otherwise.

However, in general, we cannot assume that r | 2m. For l < r,
consider the summand ∑sl

q=0 |qr + l⟩|al mod n⟩ of |ψ⟩. This summand

can be written as ∑y∈Z2m fl(y)|y⟩|al mod n⟩, where

fl(y) =





1 if y ≡ l (mod r)

0 otherwise.

Since r ∤ 2m, the function fl : Z2m → C is not exactly periodic. Hence,
the Fourier transformation and subsequent measurement does not
necessarily yield y = k · 2m/r. However, with high probability, it yields
a y ∈ Z2m that is sufficiently close to such an element.

Lemma 3.27. Let |φ⟩ be the quantum state obtained by Shor’s algorithm
on input n ≥ 100 after applying IQFTm. For all k < r = ordn(a), a
measurement of the first m qubits of |φ⟩ yields the unique y ∈ Z2m such
that |y − k · 2m/r| ≤ 1/2 with probability ≥ 2/5r.

Proof. By an elementary, but long calculation. q.e.d.

It follows from Lemma 3.27 that a measurement of the first m qubits
of |φ⟩ yields y ∈ Z2m such that |y − k · 2m/r| ≤ 1/2 for some k ∈
{0, . . . , r − 1} with probability ≥ 2/5. The probability that gcd(k, r) = 1
for a randomly chosen k ∈ {0, . . . , r − 1} is φ(r)/r.

54

3.5 Shor’s factorisation algorithm

Lemma 3.28. For all r ≥ 19,

φ(r)
r

≥ 1
4 log log r

.

Corollary 3.29. Let |φ⟩ be the quantum state obtained by Shor’s al-
gorithm on input n ≥ 100 after applying IQFTm. A measurement
of the first m qubits of |φ⟩ yields an element y ∈ Z2m such that
|y − k · 2m/r| ≤ 1/2 for some k < r with gcd(k, r) = 1 with proba-
bility ≥ 1/(10 log log n).

For the obtained y with |y − k · 2m/r| ≤ 1/2, it holds that

∣∣∣ y
2m − k

r

∣∣∣ ≤ 1
2 · 2m ≤ 1

2n2 <
1

2r2 .

(Recall that m was chosen in a way such that n2 ≤ 2m.)

It remains to show that we can extract r from y and 2m efficiently.
For this task, we will use the method of continued fractions, and we will
prove that 1. we can compute all convergents of the continued fraction
representation for a rational number x efficiently, and 2. if x ∈ Q and
p and q are relatively prime such that |x − p/q| ≤ 1/2q2, then p/q is a
convergent of the continued fraction representation for x.

3.5.3 Continued fractions

Every number α ∈ R can be represented as a continued fraction

[a0, a1, . . .] := a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

,

where a0 ∈ Z and an ∈ N \ {0} for all n > 0. If α is irrational, then α has
a unique continued fraction representation, which is infinite. Rational
numbers, on the other hand, have a two different finite continued
fraction representations.

55

3 Quantum Algorithms

Example 3.30. Consider the rational number x = 31
13 . We have

x = 2 +
5

13
= 2 +

1
13
5

= 2 +
1

2 + 3
5
= 2 +

1

2 +
1
5
3

= 2 +
1

2 +
1

1 + 2
3

= 2 +
1

2 +
1

1 +
1
3
2

= 2 +
1

2 +
1

1 +
1

1 + 1
2

= 2 +
1

2 +
1

1 +
1

1 +
1

1 + 1
1

= [2, 2, 1, 1, 2] = [2, 2, 1, 1, 1, 1]

We will show that a continued fraction representation of a rational
number p/q with p, q < 2n can be computed using Euklid’s algorithm
in O(n) basic steps. Note that we can form the expression

[a0, a1, . . . , an] := a0 +
1

a1 +
1

a2 +
1

...

an−1 +
1
an

for arbitrary numbers a0, a1, . . . , an ∈ R>0. For α = [a0, . . . , an] and
j ≤ n, we call [a0, . . . , aj] the jth convergent of α.

Theorem 3.31. For α = [a0, . . . , an] ∈ R, we have [a0, . . . , aj] = pj/qj for
all j ≤ n, where

56

3.5 Shor’s factorisation algorithm

p0 = a0, q0 = 1, (3.5)

p1 = 1 + a0 · a1, q1 = a1, (3.6)

pj+2 = aj+2 · pj+1 + pj, qj+2 = aj+2 · qj+1 + qj. (3.7)

Proof. We have

[a0] =
a0
1

=
p0
q0

and

[a0, a1] = a0 +
1
a1

=
a0 · a1 + 1

a1
=

p1
q2

,

which proves (3.5) and (3.6). We prove (3.7) by induction over j: We
have

[a0, a1, a2] = a0 +
1

a1 +
1
a2

=
a0 · a1 · a2 + a0 + a2

a1 · a2 + 1

=
a2(1 + a0 · a1) + a0

a2 · a1 + 1

=
a2 · p1 + p0
a2 · q1 + q0

=
p2
q2

,

which establishes the base case. Now let 0 ≤ j ≤ n − 3 and assume that
pj+2 and qj+2 satisfy (3.7). Then

[a0, . . . , aj+3] = [a0, . . . , aj+1, aj+2 + 1/aj+3]

=
(aj+2 +

1
aj+3

)pj+1 + pj

(aj+2 +
1

aj+3
)qj+1 + qj

=
aj+3(aj+2 · pj+1 + pj) + pj+1

aj+3(aj+2 · qj+1 + qj) + qj+1

=
aj+3 · pj+2 + pj+1

aj+3 · qj+2 + qj+1
=

pj+3

qj+3
,

which proves (3.7) for j replaced by j + 1. q.e.d.

57

3 Quantum Algorithms

Corollary 3.32. For α = [a0, . . . , an] ∈ R such that [a0, . . . , aj] = pj/qj

for j ≤ n, we have pj−1 · qj − pj · qj−1 = (−1)j for all j ≥ 1.

It follows from Corollary 3.32 that gcd(pj, qj) = 1 if aj ∈ N \ {0}
for all j. Hence, Euklid’s algorithm can be used to obtain pj+1 and qj+1.
Moreover, by the definition of pj, qj, we have p0 < p1 < · · · < pn and
q0 < q1 < · · · < qn. More precisely,

pj+2 = aj+2 · pj+1 + pj ≥ 2pj

and analogously qj+2 ≥ 2qj. Hence, pn, qn ≥ 2⌊n/2⌋.
This proves that any rational number p/q with p, q < 2n has a

continued fraction representation [a0, . . . , am] with m ≤ 2n.

Theorem 3.33. Let p ∈ Z, q ∈ N \ {0} and x ∈ Q such that gcd(p, q) =
1 and |p/q − x| ≤ 1/2q2. Then p/q is a convergent of the continued
fraction representation for x.

Proof. Consider the continued fraction representation [a0, . . . , an] of
p/q with convergents p1/q1, . . . , pn/qn = p/q. Since [a0, . . . , an] =

[a0, . . . , an−1, an − 1, 1], we can assume without loss of generality that
n is even. Let δ ∈ R be defined by the equation

x =
pn

qn
+

δ

2 qn2 .

Since |p/q − x| ≤ 1/2q2 we have |δ| < 1. Without loss of generality,
δ > 0. Set

λ :=
2
δ
· (pn−1 · qn − pn · qn−1)−

qn−1
qn

.

We have

λpn + pn−1 =
2 · pn · qn · (pn−1 · qn − pn · qn−1)

δ · qn

− δ · qn−1 · pn + δ · qn · pn−1
δ · qn

=
(2 · pn · qn + δ)(pn−1 · qn − pn · qn−1)

δ · qn

58

3.5 Shor’s factorisation algorithm

and

λ · qn + qn−1 =
2 · q2

n(pn−1 · qn − pn · qn−1)

δ · qn
− qn−1 + qn−1

=
2 · q2

n(pn−1 · qn − pn · qn−1)

δ · qn
.

Hence,

λpn + pn−1
λqn + qn−1

=
2 · pn · qn + δ

2 q2
n

=
pn

qn
+

δ

2 q2
n
= x.

By Theorem 3.31, this implies that x = [a0, . . . , an, λ]. Since n is even,
pn−1 · qn − pn · qn−1 = 1. Hence,

λ =
2
δ
− qn−1

qn
> 2 − 1 = 1.

Since λ is a rational number > 1, λ has a finite continued fraction repre-
sentation λ = [b0, . . . , bm] with b0 ≥ 1. Hence x = [a0, . . . , an, b0, . . . , bm]

is a continued fraction representation of x with convergent p/q. q.e.d.

3.5.4 Complexity

Shor’s algorithm is summarised as Algorithm 3.1. To evaluate the
time complexity and success probability of Shor’s algorithm, let k =

⌊log n⌋+ 1 the length of the binary representation of n. Hence, m ≤ 2k.

Steps 1–2 of Shor’s algorithm can be performed in time O(k3) and
produce either a factor of n or confirm that n is neither even nor a
prime power. Step 3 can also be performed in time O(k3) and produces
either a factor of n or a randomly chosen element a ∈ Z∗

n. As we have
shown, Step 4 can be implemented by a QGA with O(k3) gates on 1
or 2 qubits. Step 5 also takes time O(k3) and succeeds with probability
Ω(1/ log k) (see Corollary 3.29). Finally, Step 6 takes time O(k3) as well
and succeeds with probability ≥ 9

16 (by Lemma 3.21).

Theorem 3.34. Shor’s algorithm computes, given a composite number
n ∈ N, a non-trivial factor of n with probability ≥ 9/(160 log log n).

59

3 Quantum Algorithms

Algorithm 3.1. Shor’s factorisation algorithm

input n ∈ N composite
1. if n is even then output 2 end.
2. if n = ak for some a ∈ N, k ≥ 2 then output a end.
3. randomly choose a ∈ {1, 2, . . . , n − 1}

d := gcd(a, n)
if d > 1 then output d end.

4. compute m ∈ N such that n2 ≤ 2m < 2n2

|φ⟩ := 1
2m ∑r−1

l=0 ∑2m−1
y=0 e2πi·yl/2m

∑sl
q=0 e2πi·yrq/2m |y⟩|al mod n⟩

measure first m qubits of |φ⟩ to obtain y ∈ Z2m

5. compute convergents pj/qj of y/2m

i := min{j : aqj ≡ 1 (mod n)} ∪ {∞}
if i = ∞ then output ? end else r := qi

6. if ar is odd or ar/2 ≡ −1 (mod n) then
output ?

else
d := gcd(n, ar/2 − 1); output d

The algorithm can be implemented using O(log n3) classical operations
and O(log n3) elementary quantum gates.

By repeating the algorithm log n times, we are able to find a factor
with very high probability.

60

