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3 Quantum Algorithms

3.1 The Deutsch-Jozsa algorithm

Suppose that your task is to decide whether a function f : {0, 1}n →
{0, 1} is either constantly equal to 0 or it is balanced, i.e. f (x) = 1 for
precisely half of all inputs x ∈ {0, 1}n (either one of these two cases is
guaranteed to hold). If you decide correctly, you are awarded 1 000 €.
On the other hand, a false answer is fatal. To help you find the right
answer, you can repeatedly ask for the value of f for a given input x.
Each such query will set you back 2 €.

Classically, there is a good chance to find the right answer by
drawing an input x uniformly at random. Clearly, if f (x) = 1, you can
be sure that f is balanced. On the other hand, if f is balanced, then
the probability that f (x) = 0 for k inputs, chosen uniformly at random,
is 1/2k, which converges to 0 exponentially fast. However, unless you
query more than 2n−1 many inputs or get the answer that f (x) = 1,
you cannot be sure of your answer.

Suppose now that you may query a QGA on n + 1 qubits for
computing the function U f defined by1

U f |x⟩|j⟩ = |x⟩| f (x)⊕ j⟩.

Clearly, QGAs are more expensive than classical circuits, so let us say
that each application of U f costs 500 €. Can you get the correct answer
and still make money in this case?

Surprisingly, the answer is yes since there exists a QGA that decides
whether f is balanced with just one application of U f :

1Note that U f has to be unitary.
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3 Quantum Algorithms

|0n⟩

|1⟩

H⊗n

H

U f

H⊗n

Measurement

Let us examine what the circuit does: First, the vector |0n⟩ ⊗ |1⟩ is
mapped by H⊗n+1 to

1√
2n+1 ∑

x∈{0,1}n

|x⟩ ⊗ (|0⟩ − |1⟩) .

Second, the QGA for U f is applied to this vector, which yields the vector

1√
2n+1 ∑

x∈{0,1}n

(
|x⟩ ⊗ (−1) f (x)(|0⟩ − |1⟩)

=

(
∑

x∈{0,1}n

(−1) f (x)|x⟩√
2n

)
⊗ |0⟩ − |1⟩√

2

=

(
∑

x∈{0,1}n

(−1) f (x)|x⟩√
2n

︸ ︷︷ ︸
=:|ψ f ⟩

)
⊗ H |1⟩

To see what is the result of H⊗n |ψ f ⟩, note that for x ∈ {0, 1}, we can
write H |x⟩ as follows:

H |x⟩ = 1√
2

(
|0⟩+ (−1)x|1⟩

)

=
1√
2

∑
z∈{0,1}

(−1)xz|z⟩ .

Analogously, for x = x1 · · · xn ∈ {0, 1}n, we have

H⊗n |x⟩ = 1√
2n ∑

z=z1···zn∈{0,1}n

(−1)x1z1+···+xnzn |z⟩

=
1√
2n ∑

z∈{0,1}n

(−1)x·z|z⟩ .
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Hence,

H⊗n |ψ f ⟩ =
1√
2n ∑

x∈{0,1}n

(−1) f (x) H⊗n |x⟩

=
1

2n ∑
x∈{0,1}n

∑
z∈{0,1}n

(−1) f (x)+x·z|z⟩

=
1

2n ∑
z∈{0,1}n

∑
x∈{0,1}n

(−1) f (x)+x·z|z⟩ .

In particular, the amplitude of the basis vector |0n⟩ in H⊗n |ψ f ⟩ is
1
2n ∑x∈{0,1}n (−1) f (x). If f ≡ 0, then this amplitude is equal to 1 and,
with probability 1, the final measurement yields |0n⟩. On the other hand,
if f is balanced, then the amplitude of |0n⟩ is 0 and, with probability 1,
the final measurement yields a basis vector different from |0n⟩.

3.2 Grover’s search algorithm

While the Deutsch-Jozsa algorithm arguably solves an artificial problem,
Grover’s algorithm solves a canonical search problem: This time, the
task is to find, given an arbitrary Boolean function f : {0, 1}n → {0, 1},
an input x with f (x) = 1 (or to determine that there is no such input).
Classically, there is no better way than to test each input, which requires
2n queries to f in the worst case. Grover showed that if one has access
to a QGA for computing the function

U f : H2n+1 → H2n+1 |x⟩ ⊗ |j⟩ 7→ |x⟩ ⊗ | f (x)⊕ j⟩,

then one can build a quantum algorithm that finds an x with f (x) = 1
in time O(

√
2n).

Our first approach is to apply a Hadamard transformation to |0n⟩ to
obtain a superposition of all inputs and then to apply U f on H⊗n |0n⟩ ⊗
|0⟩. The resulting vector is

ψ :=
1√
2n ∑

x∈{0,1}n

|x⟩ ⊗ | f (x)⟩.

27



3 Quantum Algorithms

Can we measure |ψ⟩ to find an input x with f (x) = 1? For each x with
f (x) = 1, the amplitude of |x1⟩ in |ψ⟩ is 1√

2n . Hence, if for instance
there is only one such x, then a measurement of ψ will very likely not
find this x. The idea of the algorithm is to apply a transformation
on |ψ⟩ that makes the amplitudes of the basis vectors |x1⟩ much larger
while making those of |x0⟩ smaller. After this transformation, with
high probability a measurement of the last results in a basis vector of
the form |x1⟩, i.e. f (x) = 1. If the measurement fails and we obtain a
vector |x0⟩, we just repeat the process.

It turns out that this idea can be made to work using a modified
approach, where we apply U f not to H⊗n |0n⟩ ⊗ |0⟩, but to H⊗n |0n⟩ ⊗
H |1⟩. As in the Deutsch-Jozsa algorithm, the resulting vector is |ψ f ⟩ ⊗
H |1⟩, where

|ψ f ⟩ = ∑
x∈{0,1}n

(−1) f (x)|x⟩√
2n

.

Let Vf the transformation on the first n qubits defined by U f , œ

Vf |x⟩ = (−1) f (x)|x⟩.

For |ψ⟩ = ∑x ax|x⟩, we have

Vf |ψ⟩ = ∑
x : f (x)=0

ax|x⟩ − ∑
x : f (x)=1

ax|x⟩.

For |ψ⟩ = ∑x ax|x⟩, let A := 2−n ∑x ax the average amplitude. Consider
the transformation D that maps |ψ⟩ to the vector ∑x(2A − ax)|x⟩. The
corresponding matrix is

D =




2
2n − 1 2

2n · · · 2
2n

2
2n

2
2n − 1 2

2n

...
. . .

...
2
2n

2
2n · · · 2

2n − 1




.

To see this, consider a basis vector |y⟩ = ∑x δxy|x⟩ (where δxy = 1 if
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x = y and δxy = 0 otherwise). The average amplitude of |y⟩ is A = 1
2n .

Hence, D|y⟩ =
( 2

2n − 1
)
|y⟩+ ∑x ̸=y

2
2n |x⟩.

Lemma 3.1. D = H⊗n ·Rn · H⊗n with

Rn =




1
−1

−1
. . .

−1


.

Note that Rn can be implemented using O(n) simple gates.

Proof. Consider the matrix

R′ = Rn + In =




2
0

. . .
0


.

We claim that

H⊗n ·R′
n · H⊗n =

2
2n




1 1 ··· 1
1 1 ··· 1
...

...
. . .

...
1 1 ··· 1


,

i.e. H⊗n ·R′
n · H⊗n |x⟩ = 2

2n ∑y |y⟩ for all x ∈ {0, 1}n:

|x⟩ H⊗n

7−→ 1√
2n ∑

z
(−1)x·z|z⟩

R′
n7−→ 1√

2n ∑
z
(−1)x·zR′

n|z⟩ =
2√
2n

|0⟩

H⊗n

7−→ 2
2n ∑

y
|y⟩.

Finally,

H⊗n ·Rn · H⊗n = H⊗n(R′
n − In)H⊗n

= H⊗n ·R′
n H⊗n −H⊗n · In ·H⊗n

= H⊗n ·R′
n H⊗n − In

= D. q.e.d.
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3 Quantum Algorithms

For a given function f : {0, 1}n → {0, 1}, Grover’s search algorithm
iterates the Grover operator G := D · Vf sufficiently often on input H⊗n |0⟩
in order to magnify the amplitudes of the basis vectors |x⟩ with f (x) = 1.
But what do we mean by sufficiently often?

Consider the sets T = {x : f (x) = 1} and F = {x : f (x) = 0}. Af-
ter r iterations of G, the resulting vector will be of the form |ψr⟩ =

tr ∑x∈T |x⟩ + fr ∑x∈F |x⟩ with average amplitude Ar = 1
2n (−tr|T| +

fr(2n − |T|)). Now,

|ψr+1⟩ = G|ψr⟩

= DVf

(
tr ∑

x∈T
|x⟩+ fr ∑

x∈F
|x⟩
)

= D
(
− tr ∑

x∈T
|x⟩+ fr ∑

x∈F
|x⟩
)

= (2Ar + tr) ∑
x∈T

|x⟩+ (2Ar − fr) ∑
x∈F

|x⟩.

Hence,

tr+1 = 2Ar + tr =
(

1 − 2|T|
2n

)
tr +

(
2 − 2|T|

2n

)
fr;

fr+1 = 2Ar − fr = −2|T|
2n tr +

(
1 − 2|T|

2n

)
fr.

This means that the coefficients tr and fr satisfy the following recursion:

(
tr+1

fr+1

)
=

(
1 − δ 2 − δ

−δ 1 − δ

)(
tr

fr

)
, (3.1)

where δ = 2|T|
2n .

To compute the effect of the iterated application of G on H⊗n |0n⟩,
we have to solve (3.1) under the initial condition t0 = f0 = 1√

2n . Since

G is unitary, we have ∥G|ψ⟩∥ = ∥ψ∥, i.e. |T|t2
r + (2n − |T|) f 2

r = 1
for all r ∈ N. Hence, there exist ϑr such that tr = 1√

|T| sin ϑr and

fr =
1√

2n−|T| cos ϑr.

The Grover operator G can be interpreted geometrically as a rota-
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tion in the 2-dimensional space that is generated by the vectors

|φ+⟩ = 1√
|T| ∑

x∈T
|x⟩,

|φ−⟩ = 1√
2n − |T| ∑

x∈F
|x⟩.

We have

|ψ0⟩ =
1√
2n ∑

x
|x⟩

=

√
|T|
2n |φ+⟩+

√
2n − |T|

2n |φ−⟩

= sin ϑ0 |φ+⟩+ cos ϑ0 |φ−⟩.

Now, the Grover operator applied first performs a reflection across |φ−⟩
followed by a reflection across |ψ0⟩. The resulting operation is a rotation
by 2ϑ0 towards |φ+⟩. Hence, ϑr = (2r + 1)ϑ0 for all r ∈ N.

In order for the final measurement to yield |x⟩ with x ∈ T, we
need that ϑr ≈ π

2 (so that |ψr⟩ is close to |φ+⟩). Solving the equation

(2r + 1)ϑ0 = π
2 , we obtain r = π

4ϑ0
− 1

2 . Hence, for ϑ0 ≈ sin ϑ0 =
√

|T|
2n ,

we can expect that r =
⌊

π
4

√
2n

|T|
⌋

iterations suffice to find a solution
with high probability. More precisely, we have the following theorem.

Theorem 3.2. Let f : {0, 1}n → {0, 1} and m := |{x : f (x) = 1}| such
that 0 < m ≤ 3

4 · 2n, and let ϑ0 < π
3 such that sin ϑ0 = m

2n . After⌊
π

4ϑ0

⌋
iterations of G on |ψ0⟩ = 1√

2n ∑x∈{0,1}n |x⟩, a measurement of
the resulting vector yields a basis vector |x⟩ such that f (x) = 1 with
probability ≥ 1

4 .

Proof. For |ψr⟩ = sin((2r + 1)ϑ0) |φ+⟩ + cos((2r + 1)ϑ0) |φ−⟩, we de-
note by p(r) := sin2((2r + 1)ϑ0) the probability of a projection
onto |φ+⟩. (This is precisely the probability with which a measure-
ment of |ψr⟩ results in a basis vector |x⟩ such that f (x) = 1.) Let
δ ∈ (0, 1

2 ] such that
⌊

π
4ϑ0

⌋
= π

4ϑ0
− 1

2 + δ. Since |2δϑ0| ≤ |ϑ0| ≤ π
3 , we
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3 Quantum Algorithms

have

p
(⌊ π

4ϑ0

⌋)
= sin2

(⌊ π

4ϑ0

⌋)
ϑ0

= sin2
(π

2
+ 2δϑ0

)

≥ sin2
(π

2
− π

3

)
=

1
4

. q.e.d.

Finally, we can state Grover’s search algorithm. Given a QGA
for the operator Vf defined by Vf |x⟩ = (−1) f (x)|x⟩ and for known
m := |{x : f (x) = 1}|, the algorithm determines an input x such that
f (x) = 1 by the following procedure:

if m ≥ 3
4 · 2n then

|ψ⟩ := H⊗n |0n⟩
else

r :=
⌊

π
4ϑ0

⌋
for 0 ≤ ϑ0 ≤ π

3 with sin2 ϑ0 = m
2n

|ψ⟩ := Gr H⊗n |0n⟩
end if
measure |ψ⟩ to obtain a basis vector |x⟩
output x

If m ≥ 3
4 · 2n, the algorithm finds x such that f (x) = 1 with

probability ≥ 3
4 since |ψ⟩ is a uniform superposition of all basis vectors.

Otherwise, Theorem 3.2 applies, and the algorithm finds x such that
f (x) = 1 with probability ≥ 1

4 .

For m = 1 and for large n, we have
⌊

π
4ϑ0

⌋
≈ π

4

√
2n (since sin2 ϑ0 ≈

ϑ2
0 = 1

2n )). Hence, in this case, O(
√

2n) calls to Vf suffice to find an
input x such that f (x) = 1 with probability ≥ 1

4 , whereas classical
randomised algorithms need to evaluate f at O(2n) points to find such
an x with the same probability of success.

Another interesting special case is when one fourth of the inputs
are positive instances, i.e. if m = 1

4 · 2n. Recall that after r iterations of G
the resulting state is

|ψr⟩ = sin(2r + 1)ϑ0 |φ+⟩+ cos(2r + 1)ϑ0 |φ−⟩.
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For m = 1
4 · 2n, we have sin2 ϑ0 = 1

4 , and therefore ϑ0 = π
6 . After one

iteration of G, the resulting state is |ψ1⟩ = sin π
2 |φ+⟩+ cos π

2 |φ−⟩ =
|φ+⟩ and a measurement will surely result in a basis vector x such that
f (x) = 1.

In typical applications, the number m of positive instances is not
known. How can we modify the algorithm such that it also finds a
solution with good probability in this case?

Lemma 3.3. For all α ∈ R and all m ∈ N:

m−1

∑
r=0

cos(2r + 1)α =
sin 2mα

2 sin α
.

In particular, sin 2α = 2 sin α cos α, and cos 2α = 1 − 2 sin2 α.

We can now state Grover’s search algorithm for unknown m:

choose x ∈ {0, 1}n uniformly at random
if f (x) = 1 then

output x
else

choose r ∈ {0, 1, . . . , ⌊
√

2n⌋} uniformly at random
|ψ⟩ := Gr H⊗n |0n⟩
measure |ψ⟩ to obtain a basis vector |x⟩
output x

end if

Clearly, if m ≥ 3
4 · 2n, then the algorithm returns x such that

f (x) = 1 with probability ≥ 3
4 . Hence, assume now that m < 3

4 · 2n,
and set t := ⌊

√
2n⌋ + 1. What is the probability that the algorithm

outputs a good x? We have already seen that the probability of finding a
good x after r iterations of G is sin2(2r + 1)ϑ0. Now, since r is chosen
uniformly at random from {0, 1, . . . , t − 1}, the probability that the
algorithm outputs a good x is

1
t

t−1

∑
r=0

sin2(2r + 1)ϑ0
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3 Quantum Algorithms

=
1
2t

t−1

∑
r=0

(
1 − cos(2r + 1)2ϑ0) (since sin2 α = (1 − cos 2α)/2)

=
1
2
− 1

2t

t−1

∑
r=0

cos(2r + 1)2ϑ0

=
1
2
− sin 4tϑ0

4t sin 2ϑ0
(by Lemma 3.3).

For 0 < m ≤ 3
4 · 2n and t = ⌊

√
2n⌋+ 1, we have

sin 2ϑ0 = 2 sin ϑ0 cos ϑ0

= 2
√

m
2n ·

√
2n − m

2n

≥ 2
√

m
2n ·

√
1
4
=

√
m
2n

≥
√

1
2n

and therefore

t ≥ 1
sin 2ϑ0

.

Hence, the algorithm finds a good x with probability

1
2
− sin 4tϑ0

4t sin 2ϑ0
≥ 1

2
− sin 4tϑ0

4
≥ 1

2
− 1

4
=

1
4

.

To sum up, we have the following theorem.

Theorem 3.4 (Grover). Given a function f : {0, 1}n → {0, 1}, f ̸≡ 0, and
a QGA for Vf : H2n → H2n : |x⟩ 7→ (−1) f (x)|x⟩, there exists a quantum
algorithm that finds an x such that f (x) = 1 with probability ≥ 1

4 by
evaluating Vf at most O(

√
2n) times.

3.3 Fourier transformation

In the following, let (G,+) be an abelian group, and let C∗ = (C\ {0}, ·).
A character of (G,+) is a homomorphism χ : (G,+) → C∗. For two
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characters χ1, χ2, their product χ1 · χ2, defined by

χ1 · χ2 : (G,+) → C∗ : g 7→ χ1(g) · χ2(g)

is also a character. In fact the set of characters of (G,+) together with
this operation forms a new group, called the dual group and denoted by
(Ĝ, ·).

Lemma 3.5. Let (G,+) be a finite abelian group with n elements. Then
χ(g)n = 1 for all g ∈ G, i.e. χ(g) is an nth root of unity. Hence,
χ(g) = e2iπk/n for some k ∈ {0, 1, . . . , n − 1}.

Proof. For m ∈ N and g ∈ G, let

m · g := g + · · ·+ g︸ ︷︷ ︸
m times

.

The set {0, g, 2 · g, . . . } forms a subgroup of (G,+). Let

k = min{m > 0 : m · g = 0}

be the order of this subgroup. Since the order of a subgroup divides
the order of the group, we have n · g = n

k · k · g = n
k · 0 = 0. Hence,

χ(g)n = χ(n · g) = χ(0) = 1. q.e.d.

Example 3.6. Consider the cyclic group (Zn,+), where Zn =

{0, 1, . . . , n − 1}, with addition modulo n. For each y ∈ Zn, define

χy : Zn → C∗ : x 7→ e2πi xy
n .

We claim that χy is a character of (Zn,+), i.e. a group homomorphism
from (Zn,+) to (C∗, ·). Let x, x′ ∈ Zn. We have:

χy(x + x′) = e2πi x+x′
n

= e2πi xy
n e2πi x′y

n

= χy(x) · χy(x′)
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Now consider y ̸= y′ ∈ Zn. We have

χy(1) = e2πi y
n ̸= e2πi y′

n = χy′ (1).

Hence, also χy ̸= χy′ . On the other hand, let χ be a character of
(Zn,+). By Lemma 3.5, χ(1) = e2iπy/n for some y ∈ Zn. But then
χ = χy. Finally, note that χy · χy′ = χy+y′ . Hence, the mapping
Zn → Ẑn : y 7→ χy is an isomorphism between (Zn,+) and the dual
group (Ẑn, ·), i.e. (Zn,+) ∼= (Ẑn, ·).
More generally, we have the following theorem.

Theorem 3.7. Let (G,+) be a finite abelian group. Then (G,+) ∼= (Ĝ, ·).

Proof. Every abelian group is (isomorphic to) a direct sum (or a direct
product if the group operation is understood as multiplication) of cyclic
groups:

(G,+) = (Zn1 ,+)⊕ · · · ⊕ (Znk ,+).

We already know that (Zn,+) ∼= (Ẑn, ·) and therefore also

(G,+) ∼= (Ẑn1 , ·)× · · · × (Ẑnk , ·).

To establish that (G,+) ∼= (Ĝ, ·), it remains to show that there exists an
isomorphism

φ : (Ẑn1 , ·)× · · · × (Ẑnk , ·) → (Ĝ, ·).

For each g ∈ G there exists a unique decomposition into its components:
g = g1 + · · ·+ gk with gi ∈ Zni . For χ1 ∈ Ẑn1 , . . . , χk ∈ Ẑnk , we define
(φ(χ1, . . . , χk))(g) := χ1(g1) · · · χk(gk). Clearly, φ is a homomorphism.
It remains to show that φ is a bijection.

Let us first prove that φ is injective: Let (χ1, . . . , χk) ̸= (χ′
1, . . . , χ′

k),
χ = φ(χ1, . . . , χk), and χ′ = φ(χ′

1, . . . , χ′
k). There exists i with χi ̸= χ′

i ;
in particular, there exists gi ∈ Zni with χi(gi) ̸= χ′

i(gi). We have
χ(gi) = χi(gi) ̸= χ′

i(gi) = χ′(gi) and therefore also χ ̸= χ′.
It remains to prove that φ is surjective: Let χ ∈ Ĝ. For each

i = 1, . . . , k, χ induces a character χi ∈ Ẑni by setting χi(gi) = χ(gi) for
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all gi ∈ Zni . For all g ∈ G, we have:

χ(g) = χ(g1 + · · ·+ gk)

= χ(g1) · · · χ(gk)

= χ1(g1) · · · χk(gk)

= (φ(χ1, . . . , χk))(g)

Hence, χ = φ(χ1, . . . , χk). q.e.d.

Example 3.8. Consider the m-fold direct sum of (Z2,+),

(Zm
2 ,+) = (Z2,+)⊕ · · · ⊕ (Z2,+)︸ ︷︷ ︸

m times

.

We already know that (Z2,+) has two characters, namely χ0 : x 7→ 1
and χ1 : x 7→ eπix = (−1)x. The characters of (Zm

2 ,+) are of the form

χy : x = x1 . . . xm 7→ (−1)x·y = (−1)x1y1+···+xmym ,

where y = y1 . . . ym ∈ {0, 1}m.

The set of all functions f : G → C from a finite abelian group (G,+)

to C naturally forms a vector space V over C. If G = {g1, . . . , gn}, then
this vector space is isomorphic to Cn, where the isomorphism maps a
function f to the tuple ( f (g1), . . . , f (gn)), and the functions ei defined
by

ei(gj) =





1 if i = j,

0 otherwise,

form a basis of V. The vector space V can be equipped with an inner
product by setting

⟨ f | f ′⟩ :=
n

∑
i=1

f (gi)
∗ · f ′(gi).

As usual, this inner product gives rise to a norm ∥·∥ on V, namely ∥ f ∥ =√
⟨ f | f ⟩. Since ⟨ei | ei⟩ = 1 and ⟨ei | ej⟩ = 0 for i ̸= j, the set {e1, . . . , en}
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is, in fact, an orthonormal basis of V. The characters of (G,+) give
rise to a different orthonormal basis of V. For Ĝ = {χ1, . . . , χk}, set
Bi := 1√

n χi for all i = 1, . . . , n.

Theorem 3.9. Let (G,+) be a finite abelian group with characters
χ1, . . . , χn, and let Bi := 1/

√
n · χi for all i = 1, . . . , n. The vectors

B1, . . . , Bn form an orthonormal basis of V = CG, called the Fourier
basis.

Proof. Since |{B1 . . . , Bn}| = |{e1, . . . , en}|, it suffices to show that

⟨χi | χj⟩ =





n if i = j,

0 otherwise.

For each g ∈ G and for all χ ∈ Ĝ, by Lemma 3.5, we have χ(g)n = 1
and therefore |χ(g)| = 1. Hence, χ(g)∗ · χ(g) = |χ(g)|2 = 1 and
χ(g)∗ = χ(g)−1. We have:

⟨χi | χj⟩ =
n

∑
k=1

χi(gk)
∗ · χj(gk)

=
n

∑
k=1

χi(gk)
−1 · χj(gk)

=
n

∑
k=1

(χ−1
i · χj)(gk).

For i = j, we have χ−1
i · χj = 1 (the trivial character) and therefore

⟨χi | χj⟩ = n. For i ̸= j, consider the character χ := χ−1
i · χj. Since

χi ̸= χj, we have χ ̸= 1, i.e. there exists g ∈ G with χ(g) ̸= 1. Consider
the mapping hg : G → G : g′ 7→ g′ + g. Since G is finite, this mapping is
not only injective, but also surjective. Hence,

⟨χi | χj⟩ =
n

∑
k=1

χ(gk)

=
n

∑
k=1

χ(g + gk)
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= χ(g)
n

∑
k=1

χ(gk)

= χ(g) · ⟨χi | χj⟩.

Since χ(g) ̸= 1, we must have ⟨χi | χj⟩ = 0. q.e.d.

Let G = {g1, . . . , gn}, Ĝ = {χ1, . . . , χn}, and consider the matrix
X = (χj(gi))1≤i,j≤n and its conjugate transpose X∗ = ((χi(gj)

∗))1≤i,j≤n.
We claim that X∗ · X = n · I. To see this, consider the entry at position i, j:

(X∗ · X)ij =
n

∑
k=1

X∗
ik · Xkj

=
n

∑
k=1

χi(gk)
∗ · χj(gk)

= ⟨χi | χj⟩

=





n if i = j,

0 otherwise.

It follows that also X · X∗ = n · I, i.e.

n

∑
k=1

χk(gi) · χk(gj)
∗ =





n if i = j,

0 otherwise.
(3.2)

Corollary 3.10. Let (G,+) be a finite abelian group, g ∈ G and χ ∈ Ĝ.

(a) ∑n
k=1 χ(gk) =





n if χ = 1,

0 otherwise.

(b) ∑n
k=1 χk(g) =





n if g = 0,

0 otherwise.

Proof. To prove (a), note that

n

∑
k=1

χ(gk) = ⟨1 | χ⟩ =





n if χ = 1,

0 otherwise.
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To prove (b), it suffices to apply (3.2) with gi = g and gj = 0:

n

∑
k=1

χk(g) =
n

∑
k=1

χk(g) · χk(0)
∗ =





n if g = 0,

0 otherwise.
q.e.d.

Example 3.11. For G = Zn, the characters are the mappings χy, y ∈ Zn,
with χy(x) = e2πixy/n. Hence,

∑
y∈Zn

e2πi xy
n =





n if x = 0,

0 otherwise.

For G = Zm
2 , the characters are the mappings χy, y ∈ Zm

2 , with
χy(x) = (−1)x·y. Hence,

∑
y∈Zn

(−1)x·y =





2m if x = 0,

0 otherwise.

Finally, we can define the Fourier transformation. By Theorem 3.9,
the vectors Bi = 1/

√
n · χi form a basis of CG. The discrete Fourier

transform of f is the function f̂ that maps the elements of G to the
coefficients in the unique representation of f according to this basis.

Definition 3.12. Let (G,+) be a finite abelian group with elements
g1, . . . , gn, and let B1, . . . , Bn be the Fourier basis of CG. Given a function
f = f̂1 · B1 + · · ·+ f̂n · Bn ∈ CG, its discrete Fourier transform (DFT) is the
function f̂ : G → C : gi → f̂i.

How can we compute the DFT of a given function f ? It turns
out that f̂ can be computed via the conjugate transpose of the matrix
X = (χj(gi))1≤i,j≤n as defined above.

Theorem 3.13. Let (G,+) be a finite abelian group with elements
g1, . . . , gn and characters χ1, . . . , χn, and let X = (χj(gi))1≤i,j≤n. With
respect to the standard basis, for any function f : G → C, we have
f̂ = 1/

√
n · X∗ · f , i.e.
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f̂ (g1)

f̂ (g2)
...

f̂ (gn)




=
1√
n
·




χ1(g1)
∗ · · · χ1(gn)∗

χ2(g1)
∗ · · · χ2(gn)∗

...
...

χn(g1)
∗ · · · χn(gn)∗







f (g1)

f (g2)
...

f (gn)




.

Proof. Since {B1, . . . , Bn} is an orthonormal basis, we have

⟨Bi | f ⟩ =
n

∑
j=1

⟨Bi | f̂ j · Bj⟩ =
n

∑
j=1

f̂ j · ⟨Bi | Bj⟩ = f̂i

and therefore

f̂ (gi) = f̂i = ⟨Bi | f ⟩ = ⟨1/
√

n · χi | f ⟩ = 1√
n

n

∑
k=1

χi(gk)
∗ · f (gk).

q.e.d.

Corollary 3.14 (Parseval’s theorem). Let f : G → C and f̂ the DFT of f .
Then ∥ f̂ ∥ = ∥ f ∥.

Proof. Since X∗ · X = n · I, the matrix 1/
√

n · X∗ is unitary. Hence,
∥ f̂ ∥ = ∥1/

√
n · X∗ · f ∥ = ∥ f ∥. q.e.d.

The mapping f 7→ 1/
√

n · X · f (wrt. the standard basis) is called
the inverse Fourier transform.

Example 3.15. For G = Zn the characters are χy, y ∈ Zn, with χy(x) =
e2πixy/n. Hence, the Fourier transform of f : Zn → C is

f̂ : Zn → C : x 7→ 1√
n ∑

y∈Zn

e−2πixy/n f (y),

and its inverse Fourier transform is the function

f̃ : Zn → C : x 7→ 1√
n ∑

y∈Zn

e2πixy/n f (y).

For G = Zm
2 the characters are χy, y ∈ Zm

2 , with χy(x) = (−1)x·y. The
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Fourier transform of f : Zm
2 → C is

f̂ : Zm
2 → C : x 7→ 1√

2m ∑
y∈Zm

2

(−1)x·y f (y).

The same function is also the inverse Fourier transform of f .

3.4 Quantum Fourier transformation

Let (G,+) be a finite abelian group with elements g1, . . . , gn and charac-
ters χ1, . . . , χk, and consider the n-dimensional Hilbert space with basis
{|g1⟩, . . . , |gn⟩}. Every state |ψ⟩ of HG can be described by the function
f : G → C with |ψ⟩ = ∑g∈G f (g) · |g⟩, i.e. f (g) = ⟨g | ψ⟩.

Definition 3.16. Let (G,+) be a finite abelian group; G = {g1, . . . , gn}
and Ĝ = {χ1, . . . , χk}. The mapping

QFT: HG → HG :
n

∑
i=1

f (gi) · |gi⟩ 7→
n

∑
i=1

f̂ (gi) · |gi⟩

is called the quantum Fourier transformation (QFT). In particular,

QFT |g⟩ = 1√
n

n

∑
k=1

χk(g)∗ · |gk⟩

for all g ∈ G.

Lemma 3.17. QFT is a unitary transformation.

Proof. Follows from Corollary 3.14. q.e.d.

How can we implement QFT by a QGA with elementary gates?
To do this, we will follow a bottom-up process. Let G = {g1, . . . , gm}
and G′ = {g′1, . . . , g′n} with dual groups Ĝ = {χ1, . . . , χm} and Ĝ′ =
{χ′

1, . . . , χ′
n}. From G and G′ we can build a new group G ⊕ G′ =

{g + g′ : g ∈ G, g′ ∈ G′}, the direct sum of G and G′. (Formally, the
domain of G ⊕ G′ is the cartesian product of G and G′, and addition is
applied componentwise). The corresponding Hilbert space is HG⊕G′ =

HG ⊗ HG′ with basis vectors |g⟩ ⊗ |g′⟩, g ∈ G, g′ ∈ G′.
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By Theorem 3.7, the dual group of G ⊕ G′ is isomorphic to Ĝ × Ĝ′.
Hence, the characters of G ⊕ G′ are χij, 1 ≤ i ≤ m, 1 ≤ j ≤ n, with
χij(g + g′) = χi(g) · χ′

j(g′) for all g ∈ G and all g′ ∈ G′.

How does QFT behave on HG⊕G′? For a basis vector |gi⟩|g′j⟩ =

|gi⟩ ⊗ |g′j⟩, we have

QFT |gi⟩|g′j⟩ =
1√
mn

m

∑
k=1

n

∑
l=1

χij(gk + g′l)
∗ · |gk⟩|g′l⟩

=
1√
mn

m

∑
k=1

n

∑
l=1

(
χi(gk)

∗|gk⟩ ⊗ χj(g′l)
∗|g′l⟩

)

=
( 1√

m

m

∑
k=1

χi(gk)
∗|gk⟩

)
⊗
( 1√

n

n

∑
l=1

χj(g′l)
∗|gl⟩

)

= QFT |gi⟩ ⊗ QFT |g′j⟩

Example 3.18. Consider the group G = Zm
2 (the m-fold direct product

of Z2). Then QFT on the Hilbert space HG is equivalent to H⊗m since
for all x = x1 . . . xm ∈ {0, 1}m we have

H⊗m |x⟩ =
m⊗

i=1

1√
2
(|0⟩+ (−1)xi |1⟩)

=
1√
2m ∑

y1 ...ym∈{0,1}m

(−1)x1y1+···+xmym · |y⟩

=
1√
2m ∑

y∈{0,1}m

(−1)x·y · |y⟩

= QFT |x⟩.

We are interested in QFT for the group G = Zn, n ∈ N. For this
group, we have QFT |x⟩ = ∑n−1

y=0 e−2πixy/n · |y⟩ for all x ∈ {0, . . . , n − 1}.
If n = p · q with gcd(p, q) = 1, then Zn ∼= Zp × Zq, and QFT on Zn

can be composed from QFT on Zp and QFT on Zq. However, in most
applications no factorisation of n is known, or n = 2m and no two
factors are relatively prime.

For G = Z2m , instead of QFT, let us look at the inverse QFT. For
x = ∑m−1

i=0 xi · 2i ∈ Z2m , we identify the basis vector |x⟩ in HG with the
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corresponding basis vector in H2m , i.e. |x⟩ = |xm−1 . . . x0⟩. On H2m , the
inverse QFT on G corresponds to the transformation

IQFTm : H2m → H2m : |x⟩ 7→ 1√
2m ∑

y∈Z2m

e2πi·xy/2m · |y⟩.

Lemma 3.19. IQFTm |x⟩ is decomposable for all x ∈ Z2m and all m > 0:

∑
y∈Z2m

e2πi·xy/2m · |y⟩ =
m−1⊗

l=0

(
|0⟩+ eπi·x/2l · |1⟩

)
.

Proof. The proof is by induction on m. For m = 1, the statement is
trivial. Hence, let m > 1 and assume that IQFTm−1 is decomposable.
For all x ∈ Z2m , we have:

∑
y∈Z2m

e2πi·xy/2m · |y⟩

= ∑
z∈Z2m−1

(
e2πi·x·2z/2m · |z0⟩+ e2πi·x(2z+1)/2m · |z1⟩

)

= ∑
z∈Z2m−1

(
e2πi·xz/2m−1 |z0⟩+ e2πi·xz/2m−1

e2πi·x/2m |z1⟩
)

=
(

∑
z∈Z2m−1

e2πi·xz/2m−1 · |z⟩
)
⊗
(
|0⟩+ e2πi·x/2m · |1⟩

)

=
m−2⊗

l=0

(
|0⟩+ eπi·x/2l |1⟩

)
⊗
(
|0⟩+ eπi·x/2m−1 · |1⟩

)

=
m−1⊗

l=0

(
|0⟩+ eπi·[x]/2l · |1⟩

)
. q.e.d.

Let x = ∑2m

i=0 xi · 2i ∈ Z2m and consider the operation of IQFTm on
the lth qubit:

|xl⟩ 7→
1√
2

(
|0⟩+ eπi·x/2l · |1⟩

)
.

We have
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eπi·x/2l
=

m−1

∏
k=0

eπi·xk/2l−k
=

l

∏
k=0

eπi·xk/2l−k
= (−1)xl ∏

k<l
xk=1

eπi/2l−k
.

Hence, IQFTm operates on the lth qubit like a Hadamard transformation,
followed by a phase shift that depends on the qubits |xk⟩ for k < l.
Formally, for j ∈ N define

Rj =

(
1 0

0 eπi/2j

)
.

In particular, R1 = S and R2 = T. Then

IQFTm |x⟩ =
m−1⊗

l=0

(
∏
k<l

xk=1

Rl−k

)
H |xl⟩

for all x ∈ {0, 1}m. It follows that we can implement IQFTm using
O(m2) Hadamard and controlled Rj gates.

Theorem 3.20. For all m > 0, IQFTm can be implemented using O(m2)

Hadamard and controlled Rj gates, j = 1, . . . , m − 1.

QFT and periodical functions. Let f : Zn → C be a function with
period p ∈ Zn, i.e. f (m + p) = f (m) for all m ∈ Zn. For all x ∈ Zn, we
have

f̂ (x) =
1√
n ∑

y∈Zn

e−2πixy/n f (y)

=
1√
n ∑

y∈Zn

e−2πixy/n f (y + p)

= e2πixp/n · 1√
n ∑

y∈Zn

e−2πix(y+p)/n f (y + p)

= e2πixp/n · 1√
n ∑

y∈Zn

e−2πixy/n f (y)

= e2πixp/n · f̂ (x)

Hence, if f̂ (x) ̸= 0, then e2πixp/n = 1 and therefore n | xp.
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We conclude that the Fourier transform of a function with period p
can only take non-zero values on arguments x of the form x = k · n/p.

3.5 Shor’s factorisation algorithm

We can finally turn to Shor’s algorithm for factoring a composite num-
ber n, i.e. the task to, find given n, numbers p, q < n such that n = p · q.
The general idea in almost all good factorisation algorithms is to find
numbers b, c < n such that

b2 ≡ c2 (mod n), (3.3)

b ̸≡ ± c (mod n). (3.4)

We then have (b + c)(b − c) ≡ 0 (mod n), but b + c ̸≡ 0 (mod n) and
b − c ̸≡ 0 (mod n). Hence, b + c contains a factor of n, which can be
extracted by computing gcd(b + c, n) in polynomial time, e.g. using
Euklid’s algorithm.

Shor’s algorithm computes

r := ordn(a) = min{k > 0 : ak = 1 (mod n)}

for a randomly chosen a < n with gcd(a, n) = 1. If we are lucky, then
r is even and ar/2 ̸≡ −1 (mod n). In this case, b = ar/2 and c = 1
satisfy (3.3) and (3.4).

What is the probability that we are lucky? We can assume without
loss of generality that n is neither even nor a prime power because it
is easy to decide whether n = 2l · m or n = ak and to compute suitable
numbers l, m or a, k if so.

Lemma 3.21. Let n ∈ N be neither even nor a prime power, and let
Z∗

n = {a ∈ Zn : gcd(a, n) = 1}. Then

Pr
a∈Z∗

n

[ordn(a) is even and aordn(a)/2 ̸≡ −1 (mod n)] ≥ 9
16

.

To prove this lemma, we need to make a small digression into
number theory.
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3.5.1 Number theory in a nutshell

For n ∈ N, let Z∗
n the set of all a ∈ Zn with gcd(a, n) = 1; we denote

by φ(n) the cardinality of Z∗
n. When equipped with multiplication

mod n, the set Z∗
n forms an abelian group.

For prime numbers p, we have Z∗
p = {1, 2, . . . , p − 1} and φ(p) =

p − 1. In this case, the group (Z∗
p, ·) is isomorphic to the cyclic group

(Zp−1,+). More generally, if n = pk is a prime power, then

Z∗
n = {a ∈ Zn : a ̸= 0, p, 2p, . . . , (pk−1 − 1)p}

and φ(n) = pk − pk−1 = pk−1(p − 1).

Theorem 3.22. Let n = pk for a prime p > 2 and k ≥ 1. Then the group
(Z∗

n, ·) is cyclic.

Proof. We prove that there exists an element b ∈ Z∗
n with ordn(b) =

φ(n) = pk−1(p − 1). We prove this by establishing the following three
facts:

(1) there exists b ∈ Z∗
n with ordn(b) = p − 1;

(2) ordn(1 + p) = pk−1;

(3) if (G, ·) is an abelian group and g, h ∈ G with ordG(g) and ordG(h)
being relatively prime, then ordG(g · h) = ordG(g) · ordG(h).

It follows that ordn(b · (1 + p)) = φ(n).
We start by proving (1). Consider the natural homomorphism

f : Z∗
n → Z∗

p : a 7→ a (mod p).

Since Z∗
p is cyclic and f is surjective, there exists a ∈ Z∗

n with
ordp( f (a)) = p − 1. Let r := ordn(a). Since ar ≡ 1 (mod pk), we
have f (a)r = 1 (mod p) and therefore r = l(p − 1) for some l ∈ N. Set
b := al . We have bp−1 = ar ≡ 1 mod n. On the other hand, whenever
bs ≡ 1 (mod n), then (p − 1) | s because if bs ≡ 1 (mod n), then also
al·s ≡ 1 mod n and therefore r = l(p− 1) | l · s. Hence, ordn(b) = p− 1.

To prove (2), we first prove that for all m > 0 we have (1 + p)pm
=

1 + λpm+1 for some λ ∈ N such that p ∤ λ. We prove this by induction
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over m. For m = 1, we have

(1 + p)p =
p

∑
i=0

(
p
i

)
· pi

= 1 + p2 +
p

∑
i=3

(
p
i

)
· pi (since p > 2)

= 1 + p2 + p3 ·
p

∑
i=3

(
p
i

)
· pi−3

︸ ︷︷ ︸
l

= 1 + p2(1 + l · p),

which proves the statement since p ∤ (1 + l · p).

Now let m > 1 and assume that the statement holds for m − 1. We
have:

(1 + p)pm
= (1 + p)pm−1·p

= (1 + λ · pm)p

=
p

∑
i=0

(
p
i

)
λi pmi

= 1 + λpm+1 +
p

∑
i=2

(
p
i

)
λi pmi

= 1 + λpm+1 + pm+2 ·
p

∑
i=2

(
p
i

)
λi pm(i−1)−2

︸ ︷︷ ︸
l

= 1 + pm+1(λ + lp).

Since p ∤ λ, we also have p ∤ (λ + lp), which proves the statement.

It follows that there exist λ1, λ2 ∈ N with p ∤ λ1 and p ∤ λ2 such
that

(1 + p)pk−1
= 1 + λ1 · pk ≡ 1 (mod n);

(1 + p)pk−2
= 1 + λ2 · pk−1 ̸≡ 1 (mod n).
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Hence, ordn(1 + p) | pk−1 but ordn(1 + p) ∤ pk−2. Thus, ordn(1 + p) =
pk−1.

It remains to prove (3). Let r = ordG(g) and s = ordG(h) with
gcd(r, s) = 1. Clearly, (gh)rs = 1 and therefore ordG(gh) | rs. On the
other hand, assume that (gh)t = 1. We have 1r = (gh)ts = gts · hts =

gts · 1t = gts and therefore r | ts. Since gcd(r, s) = 1, this implies r | t,
and an analogous argument shows that s | t. Hence, also rs | t, which
proves that ordG(gh) = rs. q.e.d.

Remark 3.23. Theorem 3.22 does not hold for p = 2. For instance, we
have Z∗

8 = {1, 3, 5, 7} with 32 ≡ 52 ≡ 72 ≡ 1 (mod n). Hence, the
group (Z∗

8 , ·) is isomorphic to (Z2 × Z2,+), the Klein four-group.

Let n be an odd prime power, i.e. n = pe for some prime p > 2.
Since Z∗

n is cyclic, there exists a generator g of this group, i.e. Z∗
n =

{g, g2, . . . , gφ(n)}. Moreover, φ(n) = φ(pe) = pe−1(p − 1) = 2d · u for
d ≥ 1 and an odd number u.

Lemma 3.24. Let n = pe, p > 2, φ(n) = 2d · u with 2 ∤ u, and let g be a
generator of Z∗

n. Then i ∈ N is odd if and only if 2d | ordn(gi).

Proof. (⇒) Let i ∈ N be odd. We have gi·ordn(gi) ≡ 1 (mod n) and
therefore φ(n) | i · ordn(gi). Since φ(n) = 2d · u and i is odd, this
implies that 2d | ordn(gi).

(⇐) Let i ∈ N be even. We have gi·φ(n)/2 = gφ(n)·i/2 ≡ 1 (mod n)
and therefore ordn(gi) | φ(n)/2. Since 2d ∤ φ(n)/2, this implies that
2d ∤ ordn(gi). q.e.d.

Corollary 3.25. Let n = pe, p > 2, and φ(n) = 2d · u with 2 ∤ u. Then

Pr
a∈Z∗

n

[2d | ordn(a)] =
1
2

.

Finally, we can prove Lemma 3.21.

Proof (of Lemma 3.21). Let n ∈ N be neither even nor a prime power.
Hence, n = pe1

1 · · · pek
r , k > 1 for primes pi > 2 such that pi ̸= pj for
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i ̸= j. The Chinese remainder theorem tells us that the mapping

Z∗
n → Z∗

pe1
1
× · · · × Zp

ek
k

: a 7→ (a mod pe1
1 , . . . , a mod pek

k )

is an isomorphism. In particular, we have

φ(n) =
k

∏
i=1

φ(pei
i ) =

k

∏
i=1

pei−1
i (pi − 1).

Moreover, for a ∈ Z∗
n we have ordn(a) = lcm(ordpe1

1
(a), . . . , ordp

ek
k
(a))

because, by the Chinese remainder theorem, ar ≡ 1 (mod n) is equiv-
alent to ar ≡ 1 (mod pei

i ) for all i, and the latter holds if and only if
ordpei

i
(a) | r.

By the Chinese remainder theorem, a random choice of a ∈ Z∗
n

corresponds to a random choice of a1, . . . , ak with ai ∈ Zpei
i

. For a ∈ Z∗
n,

let ri = ordpei
i
(a). Then ordn(a) = gcd(r1, . . . , rk) is odd if and only if

each ri is odd. It follows from Corollary 3.25 that Pra∈Z∗
n
[ri is odd] ≤ 1

2
and Pra∈Z∗

n
[ordn(a) is odd] ≤ 1

2k .

Assume now that r = ordn(a). If ar/2 ≡ −1 (mod n), then n |
ar/2 + 1. But then also pei

i | ar/2 + 1 and therefore ar/2 ≡ −1 (mod pei
i )

for all i = 1, . . . , k. Since ari ≡ 1 (mod pei
i ) and pi > 2, this implies that

ri ∤ r
2 for all i. For r = 2d · u (where u is odd), this means that 2d | ri for

all i = 1, . . . , k. Hence,

Pr
a∈Z∗

n

[aordn(a)/2 ≡ −1 (mod n) | ordn(a) is even]

≤ Pr
a∈Z∗

n

[2d | ordpei
i
(a) for all i]

=
1
2k ,

where the last equality follows from Corollary 3.25. Finally,

Pr
a∈Z∗

n

[2 | ordn(a) and aordn(a)/2 ̸≡ −1 (mod n)]

= Pr
a∈Z∗

n

[2 | ordn(a)] · Pr
a∈Z∗

n

[aordn(a)/2 ̸≡ −1 (mod n) | 2 | ordn(a)]

≥ (1 − 1
2k ) · (1 −

1
2k )
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≥ 3
4
· 3

4
≥ 9

16
q.e.d.

3.5.2 Factoring and QFT

To sum up, we can reduce factoring to the problem of computing,
given a number n ∈ N that is neither odd nor a prime power, the
order ordn(a) of a ∈ Z∗

n. The number r = ordn(a) is the period of the
function

f : Z → Zn : x 7→ ax mod n

since f (x + r) ≡ ax+r ≡ ax · ar ≡ ax (mod n). We can use QFT to
determine this period! However, QGAs only operate on the Hadamard
space H2m . Hence, we choose a sufficiently large number m ∈ N such
that the period of f occurs in Z2m : in fact, we can always take the
unique number m such that n2 ≤ 2m < 2n2.

We can now give an informal description of Shor’s algorithm.
First, after having randomly chosen a < n, the algorithm computes the
quantum state

|ψ⟩ = 1√
2m ∑

x∈Z2m

|x⟩|ax mod n⟩ ∈ H2m+k ,

where 2k ≤ n < 2k+1. Note that the function x 7→ ax mod n is com-
putable in polynomial time (by a classical circuit) and thus also by a
QGA since for x = ∑m−1

i=0 xi · 2i we have ax ≡ ∏i : xi=1 ai (mod n) where
a0 = a and ai+1 = ai

2 mod n for all i < m.

Since x 7→ ax mod n has period r = ordn(a), we have

|ψ⟩ = 1√
2m

r−1

∑
l=0

sl

∑
q=0

|qr + l⟩|al mod n⟩,

where sl = max{s ∈ N : sr + l < 2m}.

The next step of the algorithm is to apply IQFTm to the first
m qubits of |ψ⟩. The resulting state is
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|φ⟩ = 1√
2m

r−1

∑
l=0

sl

∑
q=0

1√
2m ∑

y∈Z2m

e2πi·y(qr+l)/2m |y⟩|al mod n⟩

=
1

2m

r−1

∑
l=0

2m−1

∑
y=0

e2πi·yl/2m
sl

∑
q=0

e2πi·yr·q/2m |y⟩|al mod n⟩

Finally, the algorithm performs a measurement on the first m qubits
of |φ⟩, which yields y ∈ Z2m . Then, with some luck, y ≈ k · 2m/r and
gcd(k, r) = 1. The number r can then be extracted using the method of
continued fractions (see below).

Example 3.26. Let n = 15 and a = 7. In this case, it suffices to choose
m = 4 (as opposed to m = 8). Hence,

|ψ⟩ = 1√
16

15

∑
x=0

|x⟩|7x mod 15⟩

=
1
4
(
|0⟩|1⟩+ |1⟩|7⟩+ |2⟩|4⟩+ · · ·+ |15⟩|13⟩

)

=
1
4

((
|0⟩+ |4⟩+ |8⟩+ |12⟩

)
|1⟩

+
(
|1⟩+ |5⟩+ |9⟩+ |13⟩

)
|7⟩

+
(
|2⟩+ |6⟩+ |10⟩+ |14⟩

)
|4⟩

+
(
|3⟩+ |7⟩+ |11⟩+ |15⟩

)
|13⟩

)

=
4

∑
j=0

( 15

∑
y=0

f j(y)|y⟩
)
|7j mod 15⟩,

where

f j(y) =





1
4 if y ≡ j (mod 4)

0 otherwise.

Each f j has period 4. Hence, f̂ j(x) ̸= 0 only for x ∈ {0, 4, 8, 12}. For
k = 0, 1, 2, 3, we have

f̂ j(4k) =
1
4

15

∑
y=0

e2πi·4k·y/16 · f j(y)
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=
1
4

3

∑
l=0

e2πi·4k(4l+j)/16 · 1
4

=
1

16

3

∑
l=0

e2πi·4k(4l+j)/16

=
1

16
· eπi·kj/2

3

∑
l=0

e2πi·kl

=
1

16
· eπi·kj/2

3

∑
l=0

1

=
1
4
· eπi·kj .

Hence,

|φ⟩ = 1
4

((
|0⟩+ |4⟩+ |8⟩+ |12⟩

)
|1⟩

+
(
|0⟩+ i|4⟩ − |8⟩ − i|12⟩

)
|7⟩

+
(
|0⟩ − |4⟩+ |8⟩ − |12⟩

)
|4⟩

+
(
|0⟩ − i|4⟩ − |8⟩+ i|12⟩

)
|13⟩

)
.

With probability 1
4 each, a measurement of the first m qubits of |φ⟩

yields |0⟩, |4⟩, |8⟩ or |12⟩. From |0⟩ and |8⟩, the period 4 = ord15(7)
cannot be extracted. However, for y = 4, 12 we have y = 4k with
gcd(k, 4) = 1, and the period can be extracted.

The period r = 4 is even and 7r/2 = 72 − 4 ̸≡ −1 (mod 15). Hence,
3 = 4 − 1 and 5 = 4 + 1 are identified as factors of 15.

The probability that a measurement of the first m qubits of |φ⟩
returns y ∈ Z2m is

Pr[y] =
1

22m

r−1

∑
l=0

∣∣∣e2πi·yl/2m
sl

∑
q=0

e2πi·yrq/2m
∣∣∣
2

=
1

22m

r−1

∑
l=0

∣∣∣
sl

∑
q=0

e2πi·yrq/2m
∣∣∣
2
.

If r | 2m, i.e. for r = 2s with s ≤ m, we know that Pr[y] ̸= 0 only if
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y = k · 2m/r. Moreover, all these y occur with probability 1/r because
sl = 2m−s − 1 for all l < r by the choice of sl and

Pr[y] =
r

22m

∣∣∣
2m−s−1

∑
q=0

e2πi·yq/2m−s
∣∣∣
2

=
r

22m

∣∣∣
2m−s−1

∑
q=0

χq(y)
∣∣∣
2

=





r
22m |2m−s|2 if y ≡ 0 (mod 2m−s),

0 otherwise,

=





r
22m · 22m

r2 = 1
r if y = k · 2m/r,

0 otherwise.

However, in general, we cannot assume that r | 2m. For l < r,
consider the summand ∑sl

q=0 |qr + l⟩|al mod n⟩ of |ψ⟩. This summand

can be written as ∑y∈Z2m fl(y)|y⟩|al mod n⟩, where

fl(y) =





1 if y ≡ l (mod r)

0 otherwise.

Since r ∤ 2m, the function fl : Z2m → C is not exactly periodic. Hence,
the Fourier transformation and subsequent measurement does not
necessarily yield y = k · 2m/r. However, with high probability, it yields
a y ∈ Z2m that is sufficiently close to such an element.

Lemma 3.27. Let |φ⟩ be the quantum state obtained by Shor’s algorithm
on input n ≥ 100 after applying IQFTm. For all k < r = ordn(a), a
measurement of the first m qubits of |φ⟩ yields the unique y ∈ Z2m such
that |y − k · 2m/r| ≤ 1/2 with probability ≥ 2/5r.

Proof. By an elementary, but long calculation. q.e.d.

It follows from Lemma 3.27 that a measurement of the first m qubits
of |φ⟩ yields y ∈ Z2m such that |y − k · 2m/r| ≤ 1/2 for some k ∈
{0, . . . , r − 1} with probability ≥ 2/5. The probability that gcd(k, r) = 1
for a randomly chosen k ∈ {0, . . . , r − 1} is φ(r)/r.
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Lemma 3.28. For all r ≥ 19,

φ(r)
r

≥ 1
4 log log r

.

Corollary 3.29. Let |φ⟩ be the quantum state obtained by Shor’s al-
gorithm on input n ≥ 100 after applying IQFTm. A measurement
of the first m qubits of |φ⟩ yields an element y ∈ Z2m such that
|y − k · 2m/r| ≤ 1/2 for some k < r with gcd(k, r) = 1 with proba-
bility ≥ 1/(10 log log n).

For the obtained y with |y − k · 2m/r| ≤ 1/2, it holds that

∣∣∣ y
2m − k

r

∣∣∣ ≤ 1
2 · 2m ≤ 1

2n2 <
1

2r2 .

(Recall that m was chosen in a way such that n2 ≤ 2m.)

It remains to show that we can extract r from y and 2m efficiently.
For this task, we will use the method of continued fractions, and we will
prove that 1. we can compute all convergents of the continued fraction
representation for a rational number x efficiently, and 2. if x ∈ Q and
p and q are relatively prime such that |x − p/q| ≤ 1/2q2, then p/q is a
convergent of the continued fraction representation for x.

3.5.3 Continued fractions

Every number α ∈ R can be represented as a continued fraction

[a0, a1, . . . ] := a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

,

where a0 ∈ Z and an ∈ N \ {0} for all n > 0. If α is irrational, then α has
a unique continued fraction representation, which is infinite. Rational
numbers, on the other hand, have a two different finite continued
fraction representations.
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Example 3.30. Consider the rational number x = 31
13 . We have

x = 2 +
5

13
= 2 +

1
13
5

= 2 +
1

2 + 3
5
= 2 +

1

2 +
1
5
3

= 2 +
1

2 +
1

1 + 2
3

= 2 +
1

2 +
1

1 +
1
3
2

= 2 +
1

2 +
1

1 +
1

1 + 1
2

= 2 +
1

2 +
1

1 +
1

1 +
1

1 + 1
1

= [2, 2, 1, 1, 2] = [2, 2, 1, 1, 1, 1]

We will show that a continued fraction representation of a rational
number p/q with p, q < 2n can be computed using Euklid’s algorithm
in O(n) basic steps. Note that we can form the expression

[a0, a1, . . . , an] := a0 +
1

a1 +
1

a2 +
1

...

an−1 +
1
an

for arbitrary numbers a0, a1, . . . , an ∈ R>0. For α = [a0, . . . , an] and
j ≤ n, we call [a0, . . . , aj] the jth convergent of α.

Theorem 3.31. For α = [a0, . . . , an] ∈ R, we have [a0, . . . , aj] = pj/qj for
all j ≤ n, where
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p0 = a0, q0 = 1, (3.5)

p1 = 1 + a0 · a1, q1 = a1, (3.6)

pj+2 = aj+2 · pj+1 + pj, qj+2 = aj+2 · qj+1 + qj. (3.7)

Proof. We have

[a0] =
a0
1

=
p0
q0

and

[a0, a1] = a0 +
1
a1

=
a0 · a1 + 1

a1
=

p1
q2

,

which proves (3.5) and (3.6). We prove (3.7) by induction over j: We
have

[a0, a1, a2] = a0 +
1

a1 +
1
a2

=
a0 · a1 · a2 + a0 + a2

a1 · a2 + 1

=
a2(1 + a0 · a1) + a0

a2 · a1 + 1

=
a2 · p1 + p0
a2 · q1 + q0

=
p2
q2

,

which establishes the base case. Now let 0 ≤ j ≤ n − 3 and assume that
pj+2 and qj+2 satisfy (3.7). Then

[a0, . . . , aj+3] = [a0, . . . , aj+1, aj+2 + 1/aj+3]

=
(aj+2 +

1
aj+3

)pj+1 + pj

(aj+2 +
1

aj+3
)qj+1 + qj

=
aj+3(aj+2 · pj+1 + pj) + pj+1

aj+3(aj+2 · qj+1 + qj) + qj+1

=
aj+3 · pj+2 + pj+1

aj+3 · qj+2 + qj+1
=

pj+3

qj+3
,

which proves (3.7) for j replaced by j + 1. q.e.d.
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Corollary 3.32. For α = [a0, . . . , an] ∈ R such that [a0, . . . , aj] = pj/qj

for j ≤ n, we have pj−1 · qj − pj · qj−1 = (−1)j for all j ≥ 1.

It follows from Corollary 3.32 that gcd(pj, qj) = 1 if aj ∈ N \ {0}
for all j. Hence, Euklid’s algorithm can be used to obtain pj+1 and qj+1.
Moreover, by the definition of pj, qj, we have p0 < p1 < · · · < pn and
q0 < q1 < · · · < qn. More precisely,

pj+2 = aj+2 · pj+1 + pj ≥ 2pj

and analogously qj+2 ≥ 2qj. Hence, pn, qn ≥ 2⌊n/2⌋.
This proves that any rational number p/q with p, q < 2n has a

continued fraction representation [a0, . . . , am] with m ≤ 2n.

Theorem 3.33. Let p ∈ Z, q ∈ N \ {0} and x ∈ Q such that gcd(p, q) =
1 and |p/q − x| ≤ 1/2q2. Then p/q is a convergent of the continued
fraction representation for x.

Proof. Consider the continued fraction representation [a0, . . . , an] of
p/q with convergents p1/q1, . . . , pn/qn = p/q. Since [a0, . . . , an] =

[a0, . . . , an−1, an − 1, 1], we can assume without loss of generality that
n is even. Let δ ∈ R be defined by the equation

x =
pn

qn
+

δ

2 qn2 .

Since |p/q − x| ≤ 1/2q2 we have |δ| < 1. Without loss of generality,
δ > 0. Set

λ :=
2
δ
· (pn−1 · qn − pn · qn−1)−

qn−1
qn

.

We have

λpn + pn−1 =
2 · pn · qn · (pn−1 · qn − pn · qn−1)

δ · qn

− δ · qn−1 · pn + δ · qn · pn−1
δ · qn

=
(2 · pn · qn + δ)(pn−1 · qn − pn · qn−1)

δ · qn
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and

λ · qn + qn−1 =
2 · q2

n(pn−1 · qn − pn · qn−1)

δ · qn
− qn−1 + qn−1

=
2 · q2

n(pn−1 · qn − pn · qn−1)

δ · qn
.

Hence,

λpn + pn−1
λqn + qn−1

=
2 · pn · qn + δ

2 q2
n

=
pn

qn
+

δ

2 q2
n
= x.

By Theorem 3.31, this implies that x = [a0, . . . , an, λ]. Since n is even,
pn−1 · qn − pn · qn−1 = 1. Hence,

λ =
2
δ
− qn−1

qn
> 2 − 1 = 1.

Since λ is a rational number > 1, λ has a finite continued fraction repre-
sentation λ = [b0, . . . , bm] with b0 ≥ 1. Hence x = [a0, . . . , an, b0, . . . , bm]

is a continued fraction representation of x with convergent p/q. q.e.d.

3.5.4 Complexity

Shor’s algorithm is summarised as Algorithm 3.1. To evaluate the
time complexity and success probability of Shor’s algorithm, let k =

⌊log n⌋+ 1 the length of the binary representation of n. Hence, m ≤ 2k.

Steps 1–2 of Shor’s algorithm can be performed in time O(k3) and
produce either a factor of n or confirm that n is neither even nor a
prime power. Step 3 can also be performed in time O(k3) and produces
either a factor of n or a randomly chosen element a ∈ Z∗

n. As we have
shown, Step 4 can be implemented by a QGA with O(k3) gates on 1
or 2 qubits. Step 5 also takes time O(k3) and succeeds with probability
Ω(1/ log k) (see Corollary 3.29). Finally, Step 6 takes time O(k3) as well
and succeeds with probability ≥ 9

16 (by Lemma 3.21).

Theorem 3.34. Shor’s algorithm computes, given a composite number
n ∈ N, a non-trivial factor of n with probability ≥ 9/(160 log log n).
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Algorithm 3.1. Shor’s factorisation algorithm

input n ∈ N composite
1. if n is even then output 2 end.
2. if n = ak for some a ∈ N, k ≥ 2 then output a end.
3. randomly choose a ∈ {1, 2, . . . , n − 1}

d := gcd(a, n)
if d > 1 then output d end.

4. compute m ∈ N such that n2 ≤ 2m < 2n2

|φ⟩ := 1
2m ∑r−1

l=0 ∑2m−1
y=0 e2πi·yl/2m

∑sl
q=0 e2πi·yrq/2m |y⟩|al mod n⟩

measure first m qubits of |φ⟩ to obtain y ∈ Z2m

5. compute convergents pj/qj of y/2m

i := min{j : aqj ≡ 1 (mod n)} ∪ {∞}
if i = ∞ then output ? end else r := qi

6. if ar is odd or ar/2 ≡ −1 (mod n) then
output ?

else
d := gcd(n, ar/2 − 1); output d

The algorithm can be implemented using O(log n3) classical operations
and O(log n3) elementary quantum gates.

By repeating the algorithm log n times, we are able to find a factor
with very high probability.
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