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2 Universal Quantum Gates

Consider the n-ary controlled operation cn-U defined by

cn-U|i1 . . . in j⟩ = |i1 . . . in⟩ ⊗





U|j⟩ if i1, . . . , in = 1,

|j⟩ otherwise.

How can we implement a complicated operation such as cn-U using
simple gates such as Tf and c-U? The idea is to introduce a certain
number of control qubits, which are initially set to 0. Then, we can
implement cn-U as follows (the right part of the array resets the work
qubits to 0):
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2 Universal Quantum Gates

In fact, we can build up the Toffoli gate Tf from the two-qubit gates
c-V, c-V−1 and c-M¬, where

V =
√

M¬ =
1
2

(
1 + i 1 − i

1 − i 1 + i

)
,

as follows:

=

V V−1 V

To see this, note that the gate on the right maps |ijk⟩ to |ij⟩ ⊗
| f (i, j, k)⟩, where

| f (i, j, k)⟩ =





|k⟩ if |ij⟩ = |00⟩,
V−1V|k⟩ = |k⟩ if |ij⟩ = |01⟩,
VV−1|k⟩ = |k⟩ if |ij⟩ = |10⟩,
VV|k⟩ = |k ⊕ 1⟩ if |ij⟩ = |11⟩

= |ij ⊕ k⟩.

Lemma 2.1. Tf is computable by a QGA over {H, c-M¬, S, T, T−1} (see
Figure 2.1).

Proof. By calculation. q.e.d.

The general question here is which gates are sufficient for building
arbitrary unitary transformations. We will show that a QGA can be
approximated arbitrarily well by a QGA that consists of Hadamard, cnot
and T gates only. More precisely, we will show that

(1) every unitary transformation U can be written as a product U =

Um . . . U1 of unitary operators Ui that operate nontrivially only on
a two-dimensional subspace of H2n (generated by two vectors of
the standard basis).
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Figure 2.1. An implementation of the Toffoli gate over {H, c-M¬, S, T, T−1}.
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2 Universal Quantum Gates

(2) every unitary transformation can be composed from cnot and
quantum gates that operate on one qubit only;

(3) 1-qubit quantum gates can be approximated arbitrarily well using
H and T.

To prove (1), consider a unitary transformation U : Hm → Hm

described by a unitary (m × m)-matrix.

Lemma 2.2. U is a product of unitary matrices of the form




1
. . .

1
a c

1
. . .

1
b d

1
. . .

1




.

Proof. Consider, for instance, m = 3 and

U =




a d g

b e h

c f j


 .

If b = 0, set U1 = I. Otherwise, set

U1 =




a∗
δ

b∗
δ

b
δ − a

δ

1


 ,

where δ =
√
|a|2 + |b|2. The matrix U1 is unitary, and U1 · U is of the

form

U1 · U =




a′ d′ g′

0 e′ h′

c′ f ′ j′


 .
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If c′ = 0, set U2 =

(
a′ ∗

1
1

)
. Otherwise, set

U2 =
1√

|a′|2 + |c′|2




a′∗ 0 c′∗

0 1 0

c′ 0 −a′


 .

The matrix U2U1U is unitary and of the form

U2U1U =




1 d′′ g′′

0 e′′ h′′

c′ f ′′ j′′


 .

Since U2U1U is unitary, we have d′′ = g′′ = 0. Finally, set

U3 =




1

e′′∗ f ′′∗

h′′∗ j′′∗


 .

We have U3U2U1U = I, so U = U∗
1 U∗

2 U∗
3 , and each U∗

i is of the desired
form.

In general, we are able to find matrixes U1, . . . , Uk of the desired
form such that Uk . . . U1U = I, where k ≤ (m− 1) + (m− 2) + · · ·+ 1 =
m(m−1)

2 . q.e.d.

Corollary 2.3. A unitary transformation on n qubits is equivalent to
a product of at most 2n−1(2n−1 − 1) unitary matrices that operate
nontrivially only on a 2-dimensional subspace of H2n (generated by two
vectors of the standard basis).

Remark 2.4. The exponential blowup incurred by this translation is not
avoidable.

We can now turn towards proving (2).

Lemma 2.5. Let U : H2n → H2n be a unitary transformation that
operates nontrivially only on the subspace of H2n generated by |x⟩ =
|x1 . . . xn⟩ and |y⟩ = |y1 . . . yn⟩. Then U is a product of cnot and
1-qubit gates.
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2 Universal Quantum Gates

Proof (Sketch). Let V be the nontrivial, unitary (2 × 2)-submatrix of U.
V can be viewed as a 1-qubit gate. Recall that, for each n, the opera-
tion cn-V can be implemented using Tf (which can be built from cnot
and single qubit gates) and c-V. The gate c-V, on the other hand, can
be implemented using cnot and single qubit operations (see Nielsen &
Chuang, Quantum Computation and Quantum Information, Section 4.3).

Fix a sequence |z1⟩, . . . , |zm⟩ of basis vectors such that |z1⟩ = |x⟩,
|zm⟩ = |y⟩, and |zi⟩ differs from |zi+1⟩ on precisely one qubit. The idea
is to implement U as a product U = P1 · · · Pm−1(c∗-V)Pm−1 · · · P1. The
matrix Pi maps |zi⟩ to |zi+1⟩ and vice versa, and c∗-V is the operation
of V on the qubit that distinguishes |zm−1⟩ and |zm⟩, controlled by all
other qubits. Note that Pm−1 · · · P1 maps |x⟩ to |y⟩, and P1 · · · Pm−1

maps |y⟩ back to |x⟩. As we have seen, c∗-V and each Pi can be
implemented using cnot and 1-qubit gates. q.e.d.

Finally, we can discuss (3), the reduction of arbitrary 1-qubit gates
to H and T. Note that there exist uncountably many unitary transfor-
mations U : H2n → H2n , but from a finite (or even countably infinite)
set of gates, we can only compose countably many QGAs. Hence, there
is no way of representing every 1-qubit gate exactly using a fixed finite
set of gates. However, an approximation is possible! For two unitary
transformations U and V, we define

E(U, V) := max
∥|ψ⟩∥=1

∥(U − V)|ψ⟩∥.

Definition 2.6. A set Ω of quantum gates is universal if for any QGA U
and every ε > 0, there is a QGA V consisting only of gates from Ω such
that E(U, V) ≤ ε.

Theorem 2.7 (Solvay-Kitaev). For every QGA U consisting of m cnot
or 1-qubit gates and for every ε > 0, there exists a QGA V of size
O(m · logc m

ε ), c ≈ 2, consisting of cnot, H and T gates only such that
E(U, V) ≤ ε.
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