Quantum Computing WS 2009/10

Prof. Dr. Erich Grädel

Mathematische Grundlagen der Informatik RWTH Aachen

This work is licensed under:

http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Dieses Werk ist lizenziert unter:

http://creativecommons.org/licenses/by-nc-nd/3.0/de/

@ 2015 Mathematische Grundlagen der Informatik, RWTH Aachen. http://www.logic.rwth-aachen.de

Contents

1	Introduction	1
1.1	Historical overview	1
1.2	An experiment	2
1.3	Foundations of quantum mechanics	3
1.4	Quantum gates and quantum gate arrays	7
2	Universal Quantum Gates	19
3	Quantum Algorithms	25
3.1	The Deutsch-Jozsa algorithm	25
3.2	Grover's search algorithm	27
3.3	Fourier transformation	34
3.4	Quantum Fourier transformation	42
3.5	Shor's factorisation algorithm	46

2 Universal Quantum Gates

Consider the *n-ary* controlled operation c^n -U defined by

$$c^n$$
- $U|i_1 \dots i_n j\rangle = |i_1 \dots i_n\rangle \otimes \begin{cases} U|j\rangle & \text{if } i_1, \dots, i_n = 1, \\ |j\rangle & \text{otherwise.} \end{cases}$

How can we implement a complicated operation such as C^n -U using simple gates such as Tf and C-U? The idea is to introduce a certain number of *control qubits*, which are initially set to 0. Then, we can implement C^n -U as follows (the right part of the array resets the work qubits to 0):

In fact, we can build up the Toffoli gate Tf from the two-qubit gates c-V, $c-V^{-1}$ and $c-M_{\neg}$, where

$$V=\sqrt{M_{\neg}}=rac{1}{2}egin{pmatrix}1+\mathrm{i}&1-\mathrm{i}\1-\mathrm{i}&1+\mathrm{i}\end{pmatrix}$$
 ,

as follows:

To see this, note that the gate on the right maps $|ijk\rangle$ to $|ij\rangle\otimes|f(i,j,k)\rangle$, where

$$|f(i,j,k)\rangle = \begin{cases} |k\rangle & \text{if } |ij\rangle = |00\rangle, \\ V^{-1}V|k\rangle = |k\rangle & \text{if } |ij\rangle = |01\rangle, \\ VV^{-1}|k\rangle = |k\rangle & \text{if } |ij\rangle = |10\rangle, \\ VV|k\rangle = |k \oplus 1\rangle & \text{if } |ij\rangle = |11\rangle \\ = |ij \oplus k\rangle. \end{cases}$$

Lemma 2.1. Tf is computable by a QGA over $\{H, c-M_{\neg}, S, T, T^{-1}\}$ (see Figure 2.1).

Proof. By calculation.

O.E.D.

The general question here is which gates are sufficient for building arbitrary unitary transformations. We will show that a QGA can be *approximated* arbitrarily well by a QGA that consists of Hadamard, CNOT and T gates only. More precisely, we will show that

(1) every unitary transformation U can be written as a product $U = U_m \dots U_1$ of unitary operators U_i that operate nontrivially only on a two-dimensional subspace of H_{2^n} (generated by two vectors of the standard basis).

Figure 2.1. An implementation of the Toffoli gate over $\{H, c-M_{\neg}, S, T, T^{-1}\}$.

- (2) every unitary transformation can be composed from CNOT and quantum gates that operate on one qubit only;
- (3) 1-qubit quantum gates can be approximated arbitrarily well using H and T.

To prove (1), consider a unitary transformation $U: H_m \to H_m$ described by a unitary $(m \times m)$ -matrix.

Lemma 2.2. *U* is a product of unitary matrices of the form

Proof. Consider, for instance, m = 3 and

$$U = \begin{pmatrix} a & d & g \\ b & e & h \\ c & f & j \end{pmatrix}.$$

If b = 0, set $U_1 = I$. Otherwise, set

$$U_1 = egin{pmatrix} rac{a^*}{\delta} & rac{b^*}{\delta} \ rac{b}{\delta} & -rac{a}{\delta} \ \end{pmatrix}$$
 ,

where $\delta = \sqrt{|a|^2 + |b|^2}$. The matrix U_1 is unitary, and $U_1 \cdot U$ is of the form

$$U_1 \cdot U = \begin{pmatrix} a' & d' & g' \\ 0 & e' & h' \\ c' & f' & j' \end{pmatrix}.$$

If c' = 0, set $U_2 = \begin{pmatrix} a'^* & 1 \\ & 1 \end{pmatrix}$. Otherwise, set

$$U_2 = \frac{1}{\sqrt{|a'|^2 + |c'|^2}} \begin{pmatrix} a'^* & 0 & c'^* \\ 0 & 1 & 0 \\ c' & 0 & -a' \end{pmatrix}.$$

The matrix U_2U_1U is unitary and of the form

$$U_2U_1U = \begin{pmatrix} 1 & d'' & g'' \\ 0 & e'' & h'' \\ c' & f'' & j'' \end{pmatrix}.$$

Since U_2U_1U is unitary, we have d''=g''=0. Finally, set

$$U_3 = \begin{pmatrix} 1 & & & \\ & e''^* & f''^* \\ & h''^* & j''^* \end{pmatrix}.$$

We have $U_3U_2U_1U = I$, so $U = U_1^*U_2^*U_3^*$, and each U_i^* is of the desired form.

In general, we are able to find matrixes U_1,\ldots,U_k of the desired form such that $U_k\ldots U_1U={\rm I}$, where $k\leq (m-1)+(m-2)+\cdots+1=\frac{m(m-1)}{2}$. Q.E.D.

Corollary 2.3. A unitary transformation on n qubits is equivalent to a product of at most $2^{n-1}(2^{n-1}-1)$ unitary matrices that operate nontrivially only on a 2-dimensional subspace of H_{2^n} (generated by two vectors of the standard basis).

Remark 2.4. The exponential blowup incurred by this translation is not avoidable.

We can now turn towards proving (2).

Lemma 2.5. Let $U: H_{2^n} \to H_{2^n}$ be a unitary transformation that operates nontrivially only on the subspace of H_{2^n} generated by $|x\rangle = |x_1 \dots x_n\rangle$ and $|y\rangle = |y_1 \dots y_n\rangle$. Then U is a product of CNOT and 1-qubit gates.

Proof (Sketch). Let V be the nontrivial, unitary (2×2) -submatrix of U. V can be viewed as a 1-qubit gate. Recall that, for each n, the operation C^n -V can be implemented using Tf (which can be built from CNOT and single qubit gates) and C-V. The gate C-V, on the other hand, can be implemented using CNOT and single qubit operations (see Nielsen & Chuang, *Quantum Computation and Quantum Information*, Section 4.3).

Fix a sequence $|z_1\rangle,\ldots,|z_m\rangle$ of basis vectors such that $|z_1\rangle=|x\rangle,$ $|z_m\rangle=|y\rangle$, and $|z_i\rangle$ differs from $|z_{i+1}\rangle$ on precisely one qubit. The idea is to implement U as a product $U=P_1\cdots P_{m-1}(c^*-V)P_{m-1}\cdots P_1$. The matrix P_i maps $|z_i\rangle$ to $|z_{i+1}\rangle$ and vice versa, and c^*-V is the operation of V on the qubit that distinguishes $|z_{m-1}\rangle$ and $|z_m\rangle$, controlled by all other qubits. Note that $P_{m-1}\cdots P_1$ maps $|x\rangle$ to $|y\rangle$, and $P_1\cdots P_{m-1}$ maps $|y\rangle$ back to $|x\rangle$. As we have seen, c^*-V and each P_i can be implemented using CNOT and 1-qubit gates.

Finally, we can discuss (3), the reduction of arbitrary 1-qubit gates to H and T. Note that there exist uncountably many unitary transformations $U: H_{2^n} \to H_{2^n}$, but from a finite (or even countably infinite) set of gates, we can only compose countably many QGAs. Hence, there is no way of representing every 1-qubit gate *exactly* using a fixed finite set of gates. However, an *approximation* is possible! For two unitary transformations U and V, we define

$$\mathrm{E}(U,V) := \max_{\||\psi\rangle\|=1} \|(U-V)|\psi\rangle\|.$$

Definition 2.6. A set Ω of quantum gates is *universal* if for any QGA U and every $\varepsilon > 0$, there is a QGA V consisting only of gates from Ω such that $E(U,V) \le \varepsilon$.

Theorem 2.7 (Solvay-Kitaev). For every QGA U consisting of m cnot or 1-qubit gates and for every $\varepsilon > 0$, there exists a QGA V of size $O(m \cdot \log^c \frac{m}{\varepsilon})$, $c \approx 2$, consisting of cnot, H and T gates only such that $E(U,V) \leq \varepsilon$.