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1 Introduction

1.1 Historical overview

The history of quantum computing started in 1982 when Nobel laure-
ate Richard Feynman argued that certain quantum mechanical effects
cannot be simulated efficiently by classical computers. This started a
debate whether these effects (in particular the parallelism which occurs
inherently in quantum mechanical processes) could be employed by
building a quantum computer.

Between 1985 and 1993, in a series of papers, Deutsch, Bernstein-
Vazirani, Yao, and others advanced the theoretical foundations of quan-
tum computing by providing theoretical models such as quantum Tur-
ing machines and quantum gate arrays as well as introducing complex-
ity classes for quantum computing and several simple algorithms that
could be performed by a quantum computer.

A breakthrough occurred in 1994 when Peter Shor published his
factorisation algorithm for quantum computers, which runs in poly-
nomial time. His algorithm relies on the so-called quantum Fourier
transformation, which we will introduce later. Another example of a
quantum algorithm is Grover’s search algorithm (1996), that can find a
needle in a haystack of size N in time O(

√
N).

Despite these surprising results, quantum computing still faces
several problems: There are not many more algorithms known besides
the one we have mentioned, and a quantum computer of moderate size
that can keep a stable state for a sufficient amount of time needs yet to be
built. So far, one was only able to build a quantum computer consisting
of 7 qubits, which successfully factorised the number 15 = 3 · 5.
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1 Introduction

1.2 An experiment

The following experiment can be conducted using easily accessible
ingredients:

• a powerful light source (e.g. a laser),

• three polarisation filters, which polarise light horizontally, verti-
cally, and with an angle of 45°, respectively.

If we put one or more of the polarisation filters in front of the light
source, we will make the following observations:

(1) If only the horizontal polarisation filter (→) is put in front of the
light source, 50% of light passes through.

(2) If the vertical polarisation filter (↑) is put in front of the horizontal
filter, 50% of light passes through the first filter, but the remaining
light gets blocked by the second filter.

(3) However, if the diagonal filter (↗) is put between → and ↑, we can
observe that, from the total light emitted by the source, 50% passes
through the first filter, 25% passes through the first two filters, and
12.5% of the light passes through all three filters, after all.

To explain these results, we describe the polarisation state of a
photon by a vector

|φ⟩ := α|↑⟩+ β|→⟩

in a 2-dimensional vector space with basis {|↑⟩, |→⟩}. Since the direc-
tion of such a vector is all that matters, we only consider unit vectors:
|α|2 + |β|2 = 1. Also note that the choice of the basis is arbitrary: In-
stead of {|↑⟩, |→⟩}, one could also take {|↗⟩, |↘⟩} or, for that matter,
any pair of orthogonal unit vectors.

The measurement of a state corresponds to the projection of such
a vector with respect to an orthonormal basis, e.g. {|↑⟩, |→⟩}, which
is given by the present equipment: If the vector |φ⟩ = α|↑⟩+ β|→⟩ is
measured, it is projected either to |↑⟩ (with probability |α|2) or to |→⟩
(with probability |β|2).
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After the measurement, the vector φ is “destroyed”, i.e. it has been
transformed into one of the basic states |↑⟩ or |→⟩. There is no way to
gain back φ, and each successive measurement gives the same result as
the first one.

To each polarisation filter belongs a different orthonormal basis: If
the angle of the filter is η, then the corresponding basis is

{sin η|↑⟩+ cos η|→⟩ , cos η|↑⟩ − sin η|→⟩}.

In particular, for both the horizontal and the vertical polarisation filter,
the corresponding basis is {|↑⟩, |→⟩}, whereas for the diagonal filter ↗,
the basis is

{|↗⟩, |↘⟩} =
{ 1√

2
(|↑⟩+ |→⟩), 1√

2
(|↑⟩ − |→⟩)

}

The photons that, after the measurement, correspond to the polari-
sation, pass through the filter; the others are reflected. Hence, filter →
projects 50% of the photons onto |→⟩ and lets them pass; the other 50%
are projected onto |↑⟩ and thus reflected. Filter ↑, on the other hand,
reflects all photons that are projected on |→⟩. Hence, no light passes
through this filter if it is put behind filter →.

Filter ↗ projects a photon in state |→⟩ = 1√
2
|↗⟩ − 1√

2
|↘⟩ with

probability 1
2 onto |↗⟩. Hence, if filter ↗ is put in between filter →

and filter ↑, then 25% of the photons pass through the first two filters
and are subsequently in state |↗⟩. Since |↗⟩ = 1√

2
|→⟩+ 1√

2
|↑⟩, half

of these are projected by ↑ to |↑⟩ and can pass through.

1.3 Foundations of quantum mechanics

In general, a state is a complete description of a physical system. In
quantum mechanics, a state is a unit vector in a Hilbert space.

Definition 1.1. A Hilbert space H is a vector space over the field C of
complex numbers, equipped with an inner product

⟨· | ·⟩ : H × H → C

3
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with the following properties:

• ⟨ψ | φ⟩ = ⟨φ | ψ⟩∗ for all ψ, φ ∈ H (for a complex number z = a+ ib,
its conjugate z∗ is defined by z∗ = a − ib).

• ⟨ψ | ψ⟩ ≥ 0 for all ψ ∈ H, and ⟨ψ | ψ⟩ = 0 if and only if ψ = 0 (the
zero vector).

• ⟨ψ | αφ1 + βφ2⟩ = α⟨ψ | φ1⟩+ β⟨ψ | φ2⟩ for all ψ, φ1, φ2 ∈ H and
α, β ∈ C.

Note that, if H is a Hilbert space, then ∥·∥ : H → C, defined by

∥ψ∥ :=
√
⟨ψ | ψ⟩

for all ψ ∈ H, defines a norm on H.

Remark 1.2. For Hilbert spaces of infinite dimension, in which we are
not interested here, it is also required that H is complete (with respect
to ∥·∥), i.e. that any Cauchy sequence has a limit.

In quantum mechanics, a vector ψ ∈ H is usually written in Dirac
notation as |ψ⟩ (read ket ψ). However, the zero vector is denoted by 0
(not |0⟩, which might be a different vector). For a given vector |ψ⟩, its
dual vector is denoted by ⟨ψ| (read bra ψ). Formally, ⟨ψ| is the function
from H to C that maps a vector |φ⟩ to the number ⟨ψ | φ⟩.

Definition 1.3. An orthonormal basis of a Hilbert space H is a basis
{|e1⟩, . . . , |en⟩} of H such that

⟨ei | ej⟩ =





1 if i = j,

0 if i ̸= j,

for all i, j = 1, . . . , n. In particular, ∥ei∥ = 1 for all i = 1, . . . , n.

The elementary building blocks of a classical computer are the bits,
which can be in one of two states 0 or 1. In quantum computing, the
elementary building blocks are the qubits; these are superpositions of
two vectors |0⟩ and |1⟩, which form a basis for the 2-dimensional Hilbert
space H2. (Note that any two Hilbert spaces of the same dimension are
isomorphic.)
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Definition 1.4. Given a basis |0⟩, |1⟩ of H2, a qubit is any vector |ψ⟩ =
α|0⟩+ β|1⟩ ∈ H2 such that |α|2 + |β|2 = 1.

If a qubit |ψ⟩ = α|0⟩+ β|1⟩ is measured, then with probability |α|2
we obtain the state |0⟩, and with probability |β|2 we obtain the state |1⟩.
Moreover, any successive measurement leads to the same result. Hence,
although a qubit can be in one of infinitely many states, we can only
extract one bit of classical information. This process of extraction (the
measurement) is, in fact, a probabilistic process.

Of course, a quantum computer will normally not only have access
to one qubit but to many of them. A classical system with n bits
comprises 2n states 0 · · · 0, 0 · · · 1 up to 1 · · · 1. An n-qubit system, on the
other hand, has 2n basic states and can reside in any superposition

α0|0 · · · 0⟩+ α1|0 · · · 1⟩+ · · ·+ α2n−1|1 · · · 1⟩

such that ∑2n−1
i=0 |αi|2 = 1. Such systems are also called quantum registers.

The n-qubit space H2n can be obtained from H2 by an operation
called the tensor product. Formally, if V and W are Hilbert spaces, then
V ⊗ W (read V tensor W) is a Hilbert space of dimension dim V ⊗ W =

dim V · dim W. Any two vectors |ψ⟩ ∈ V and |φ⟩ ∈ W correspond
to a vector |ψ⟩ ⊗ |φ⟩ ∈ V ⊗ W, and this operation is compatible with
addition and scalar multiplication:

• (|ψ1⟩+ |ψ2⟩)⊗ |φ⟩ = |ψ1⟩ ⊗ |φ⟩+ |ψ2⟩ ⊗ |φ⟩;
• |ψ⟩ ⊗ (|φ1⟩+ |φ2⟩) = |ψ⟩ ⊗ |φ1⟩+ |ψ⟩ ⊗ |φ2⟩;
• α|ψ⟩ ⊗ |φ⟩ = |ψ⟩ ⊗ α|φ⟩ = α(|ψ⟩ ⊗ |φ⟩).

In fact, if {v1, . . . , vn} is a basis of V and {w1, . . . , wm} is a basis of W,
then {vi ⊗ wj : i = 1, . . . , n, j = 1, . . . , m} is a basis of V ⊗ W. Note
that this space is different from the product space V × W, which is of
dimension dim V + dim W. Instead of |ψ⟩ ⊗ |φ⟩, we also write |ψ⟩|φ⟩
or |ψφ⟩. We have

H2n = H2 ⊗ · · · ⊗ H2︸ ︷︷ ︸
n times

,

and {|0 · · · 0⟩, |0 · · · 1⟩, . . . , |1 · · · 1⟩} is a basis of H2n . Note that
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dim H2n = 2n. Hence, the dimension of the system grows exponentially
in the number of qubits.

As opposed to H2 × H2, not every state in H2 ⊗ H2 can be decom-
posed into two states of H2. We call such states entangled.

Proposition 1.5. There exists a unit vector |ψ⟩ ∈ H2 ⊗ H2 such that
|ψ⟩ ̸= |φ1⟩ ⊗ |φ2⟩ for any two vectors |φ1⟩, |φ2⟩ ∈ H2.

Proof. Consider, for example, |ψ⟩ := 1√
2
(|00⟩+ |11⟩), and assume that

there exists |φ1⟩, |φ2⟩ ∈ H2 with |ψ⟩ = |φ1⟩ ⊗ |φ2⟩. Then there exist
α1, α2, β1, β2 ∈ C such that |φi⟩ = αi|0⟩+ βi|1⟩ for i = 1, 2. Hence,

|ψ⟩ = (α1|0⟩+ β1|1⟩)⊗ (α2|0⟩+ β2|1⟩)
= α1α2|00⟩+ α1β2|01⟩+ α2β1|10⟩+ β1β2|11⟩

Since {|00⟩, |01⟩, |10⟩, |11⟩} forms a basis of H2 ⊗ H2, we have α1β2 =

α2β1 = 0. But then, also α1α2 = 0 or β1β2 = 0, a contradiction. q.e.d.

In an n-qubit system, each qubit can be measured separately. The
measurement of the first qubit of an n-qubit state |ψ⟩ = ∑v∈{0,1}n αv|v⟩
can have two outcomes:

• With probability p = ∑w∈{0,1}n−1 |α0w|2, the result of the measure-
ment is |0⟩, and |ψ⟩ is projected onto the vector

|0⟩ ⊗ 1√
p ∑

w∈{0,1}n−1

α0w|w⟩.

• With probability q = ∑w∈{0,1}n−1 |α1w|2, the result of the measure-
ment is |1⟩, and |ψ⟩ is projected onto the vector

|1⟩ ⊗ 1√
q ∑

w∈{0,1}n−1

α1w|w⟩.

A quantum-mechanical system evolves through unitary transforma-
tions. Formally, a linear operator U : H → H : |ψ⟩ 7→ U|ψ⟩ is unitary if
it preserves the inner product:

⟨Uψ | Uφ⟩ = ⟨ψ | φ⟩
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For the presentation of an operator by a matrix U ⊆ Cn×n this means
that U∗U = UU∗ = I (the identity matrix), where U∗ is the conjugate
transpose of U, i.e. the matrix that results from U by transposing U
and replacing each entry by its conjugate. In particular, every unitary
transformation is invertible, i.e. reversible.

Finally, we can postulate that any computation of a quantum
computer consists of reversible building blocks (combined with mea-
surements). This imposes a serious limitation on quantum computers.
For example, this implies that no quantum computer can simply copy
around some qubits.

Theorem 1.6 (No-Cloning Theorem). Let H be any Hilbert space of
dimension n > 1. There does not exist a unitary transformation Copy :
H ⊗ H → H ⊗ H and a vector |0⟩ ∈ H such that Copy(|ψ⟩ ⊗ |0⟩) =

|ψ⟩ ⊗ |ψ⟩ for all ψ ∈ H.

Proof. Assume that Copy and |0⟩ exist. Since n > 1, there exists a unit
vector |1⟩ that is orthogonal to |0⟩. Let ψ = 1√

2
(|0⟩+ |1⟩). We have:

Copy(|ψ⟩|0⟩) = 1√
2
(Copy(|0⟩|0⟩) + Copy(|1⟩|0⟩))

=
1√
2
(|0⟩|0⟩+ |1⟩|1⟩)

The latter vector is different from |ψ⟩|ψ⟩ = 1
2 (|00⟩+ |01⟩+ |10⟩+ |11⟩),

a contradiction. q.e.d.

1.4 Quantum gates and quantum gate arrays

Definition 1.7. A quantum gate on m qubits is a unitary transforma-
tion U : H2m → H2m on the Hilbert space H2m = H2 ⊗ · · · ⊗ H2 of
dimension 2m.

For m = 1, a quantum gate is a unitary transformation U : H2 →
H2. Consider the standard basis |0⟩, |1⟩ of H2. The transformation U is
uniquely determined by its behaviour on the basis vectors:

U : |0⟩ 7→ a|0⟩+ b|1⟩

7



1 Introduction

|1⟩ 7→ c|0⟩+ d|1⟩,

As usual in linear algebra, we write these vectors as column vectors (a
b)

and (c
d), respectively. Hence, the application of U on the basis vectors

|0⟩ = (1
0) and |1⟩ = (0

1) corresponds to a multiplication of the matrix

(
a c

b d

)

with these vectors. That U is unitary is expressed by the matrix equation

(
a∗ b∗

c∗ d∗

)(
a c

b d

)
=

(
1 0

0 1

)

Example 1.8.

(1) The not gate is given by the matrix

M¬ =

(
0 1

1 0

)
.

We have M¬|0⟩ = |1⟩ and M¬|1⟩ = |0⟩.
(2) Consider the matrix

M =
1
2

(
1 + i 1 − i

1 − i 1 + i

)
.

M is unitary since

M∗M =
1
4

(
1 − i 1 + i

1 + i 1 − i

)(
1 + i 1 − i

1 − i 1 + i

)

=
1
4

(
2(1 − i2) (1 − i)2 + (1 + i)2

(1 − i)2 + (1 + i)2 2(1 − i2)

)

=

(
1 0

0 1

)
.

Moreover, we have
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M2 =
1
4

(
1 + i 1 − i

1 − i 1 + i

)2

=

(
0 1

1 0

)
= M¬ .

Hence, M is a square root of M¬, and we write M =
√

M¬ .

(3) The Hadamard transformation is given by the matrix

H =
1√
2

(
1 1

1 −1

)
.

It transforms the standard basis |0⟩, |1⟩ into the Hadamard basis
(also called the Fourier basis)

|0′⟩ = H |0⟩ = 1√
2
(|0⟩+ |1⟩)

|1′⟩ = H |1⟩ = 1√
2
(|0⟩ − |1⟩)

(see Section 1.2) and back:

H |0′⟩ = H
(

1/
√

2
1/

√
2

)
=

(
1
0

)
= |0⟩

H |1′⟩ = H
(

1/
√

2
1/

√
2

)
=

(
0
1

)
= |1⟩

We denote the operation of a quantum gate U on 1 qubit as follows:

1 U

Other important gates on 1 qubit are

S =

(
1 0

0 i

)
(Phase)

and

T =

(
1 0

0 eiπ/4

)
.

Note that S = T2.

9
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For m = 2, we are dealing with 2-qubit gates, which are of the
form U : H4 → H4. The standard basis of H4 is |00⟩, |01⟩, |10⟩, |11⟩, or
as coordinates

( 1
0
0
0

)
,
( 0

1
0
0

)
,
( 0

0
1
0

)
,
( 0

0
0
1

)
.

Example 1.9. The controlled not gate (cnot) is given by the matrix

Mcnot =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




We have:

Mcnot|00⟩ = |00⟩, Mcnot|01⟩ = |01⟩,
Mcnot|10⟩ = |11⟩, Mcnot|11⟩ = |10⟩.

Hence, Mcnot|ij⟩ = |i⟩ ⊗ |i ⊕ j⟩ (⊕ denotes exclusive or, i.e. i ⊕ j = 1 if
and only if i ̸= j). The operation of cnot on 2 qubits is denoted as
follows:

1

2

In general, if U is a unitary transformation on 1 qubit, then we can
define a unitary transformation c-U (read controlled U) on 2 qubits as
follows:

c-U|ij⟩ = |i⟩ ⊗





U|j⟩ if i = 1,

|j⟩ if i = 0.

Graphically, this operation is denoted as follows:
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1

2 U

If U is represented by the matrix ( a c
b d ), then c-U is represented by the

matrix



1 0 0 0

0 1 0 0

0 0 a c

0 0 b d




.

For m = 3, an interesting gate is c-cnot, better known as the Toffoli
gate Tf, which is defined as follows:

Tf |ijk⟩ = |ij⟩ ⊗ |ij ⊕ k⟩.

The corresponding matrix is




1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0




.

Graphically, this operation is denoted as follows:

1

2

3
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Of course, it is also possible to consider the Toffoli gate as a classical
gate

Tf : {0, 1}3 → {0, 1}3 : (i, j, k) 7→ (i, j, ij ⊕ k).

In fact, every classical circuit can be simulated by a circuit consisting of
Tf gates only. For f : {0, 1}n → {0, 1}n consider the reversible function

f ′ : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n : (x, y) 7→ (x, f (x)⊕ y).

We show that any reversible function can be computed by a circuit
consisting of Tf gates.

More formally, we say that a set Ω of reversible gates is complete
(for classical reversible computation) if, given any reversible function
g : {0, 1}n → {0, 1}n, we can construct a circuit consisting of gates in Ω
only that computes a function h : {0, 1}n × {0, 1}k → {0, 1}n × {0, 1}k

such that for a fixed u ∈ {0, 1}k we have

h(x, u) = (g(x), v)

for all x ∈ {0, 1}n.

Theorem 1.10. {Tf} is complete (for classical reversible computation).

Proof. We use the fact that every function can be computed by (classical)
circuit consisting of nand gates. Then, we can replace each nand gate
with inputs x and y by a Toffoli gate with inputs x, y and 1 (Note that
xy ⊕ 1 = ¬(x ∧ y)):

x

y
¬(x ∧ y)

n
a

n
d

⇝

x

y

1

x

y

xy ⊕ 1

Similarly, we can replace every branching with input x by a Toffoli gate
with inputs 1, x and 0 (Note that x ⊕ 0 = x):
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x

x

x

⇝

1

x

0

1

x

x ⊕ 0

q.e.d.

Recall that c-U executes U on the target qubit if and only if the
control qubit is set to 1:

1

2 U

We can switch the gate’s behaviour by introducing two ¬ gates:

1

2 U

=

1

2

¬ ¬

U

The resulting operation executes U if the control qubit is set to 0:

|ij⟩ 7→ |i⟩ ⊗





U|j⟩ if j = 0,

|j⟩ if j = 1.

Formally, the parallel execution of two unitary transformations
corresponds to a tensor product of their matrices.

Definition 1.11. Let

A =




a11 · · · a1n
...

...

am1 · · · amn


 , B =




b11 · · · b1s
...

...

ar1 · · · brs




13
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be two matrices of sizes m × n and r × s, respectively. The matrix

A ⊗ B :=




a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
...

am1B am2B · · · amnB




of size mr × ns is called the tensor product of A and B.

Proposition 1.12. Let A and B be two 2 × 2 matrices that represent
quantum gates on one qubit. Then, the simultaneous action of A on the
first and B on the second qubit is represented by A ⊗ B.

Proof. We have to check what the simultaneous action of A and B does
to the basis vectors |00⟩, |01⟩, |10⟩ and |11⟩ of H4. If

A =

(
a00 a01

a10 a11

)
and B =

(
b00 b01

b10 b11

)
,

then the basis vector |ij⟩ is mapped to

A|i⟩ ⊗ B|j⟩ = (a0i|0⟩+ a1i|1⟩)⊗ (b0j|0⟩+ b1j|1⟩)
= a0ib0j|00⟩+ a0ib1j|01⟩+ a1ib0j|10⟩+ a1ib1j|11⟩

Hence, in the matrix representing this operation the column correspond-
ing to |ij⟩ is




a0ib0j

a0ib1j

a1ib0j

a1ib1j




This is indeed the column that corresponds to |ij⟩ in

14
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A ⊗ B =




a00b00 a00b01 a01b00 a01b01

a00b10 a00b11 a01b10 a01b11

a10b00 a10b01 a11b00 a11b01

a10b10 a10b11 a11b10 a11b11




.

q.e.d.

This correspondence does not only hold for transformations on H2

but for transformation on any Hilbert space: If A and B are unitary
transformation on two Hilbert spaces V and W, then A ⊗ B defines the
unitary transformation on V ⊗ W that corresponds to the simultaneous
(or sequential) composition of A and B (the order does not matter).
Moreover, A ⊗ B does not introduce any entanglement.

Example 1.13. Let A = B = H the Hadamard transformation. Then

H⊗H =
1√
2

(
1 1

1 −1

)
⊗ 1√

2

(
1 1

1 −1

)

=
1
2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




,

and

(H⊗H)|ij⟩ = 1
2
(
|00⟩+ (−1)j|01⟩+ (−1)i|01⟩+ (−1)i+j|11⟩

)

=
1
2
(
|0⟩+ (−1)i|1⟩)⊗ (|0⟩+ (−1)j|1⟩

)
,

a non-entangled state, which is not a surprise given that |ij⟩ is not
entangled and that H⊗H stands for the simultaneous action of H on
each qubit.

On the other hand, Mcnot cannot be represented as a tensor prod-
uct of two 2 × 2 matrices. To see this, consider the operation of Mcnot

on the non-entangled state |ψ⟩ = 1√
2
(|0⟩+ |1⟩)⊗ |0⟩ = 1√

2
(|00⟩+ |10⟩).

We have Mcnot|ψ⟩ = 1√
2
(|00⟩ + |11⟩), and we know that this is an

15
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entangled state. Hence, Mcnot cannot possibly be equal to a tensor
product of two 2 × 2 matrices.

Let us revisit the Hadamard transformation H, defined by the
matrix

H =
1√
2

(
1 1

1 −1

)
,

and consider the operation

H⊗n = H⊗ · · · ⊗ H︸ ︷︷ ︸
n times

on n qubits. We have:

H⊗n |0 . . . 0⟩ = H |0⟩ ⊗ · · · ⊗ H |0⟩

=
1√
2n

(
(|0⟩+ |1⟩)⊗ · · · ⊗ (|0⟩+ |1⟩)

)

=
1√
2n ∑

x∈{0,1}n

|x⟩.

Hence, the first basis vector |0 . . . 0⟩ is transformed into a uniform
superposition of all the 2n basis vectors. Graphically, this operation is
denoted as follows:

1

2

...

n

H

H

...

H

Definition 1.14. Let Ω be a set of quantum gates. A quantum gate
array (QGA) (or a quantum circuit) on n qubits over Ω is a unitary
transformation, which is composed out of quantum gates in Ω.

Note that mathematically there is no difference between a quantum
gate and a QGA: both are unitary transformations. The idea is that,

16
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while a QGA may operate on a large number of qubits, a quantum gate
may only operate on a small number of qubits.

The basic step in building a quantum gate array is letting a single
gate U operate on a selected number of qubits, say the qubits i1, . . . , im.
Mathematically, this operation (on n qubits) can be described by the
unitary transformation

P−1
i1 ...im

(U ⊗ I2n−m )Pi1 ...im

where I2n−m is the identity mapping on H2n−m and Pi1 ...im is the transfor-
mation that permutes the qubits 1, . . . , m with the qubits i1, . . . , im.

1
...

i1
...

im

...

n

U

Example 1.15. Consider the following QGA consisting of Hadamard and
cnot gates:

1

2

H H

H H

The corresponding unitary transformation is U = H⊗2 ·Mcnot · H⊗2.
We claim that U = P−1

21 Mcnot P21, the operation of Mcnot on the qubits
2 and 1 (instead of 1 and 2). Let M = Mcnot. Then:

U|ij⟩ = H⊗2 ·M
(1

2
(
|0⟩+ (−1)i|1⟩

)
⊗
(
|0⟩+ (−1)j|1⟩

))

= H⊗2 ·M
(1

2
(
|00⟩+ (−1)j|01⟩+ (−1)i|10⟩+ (−1)i+j|11⟩

))

17
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= H⊗2
(1

2
(
|00⟩+ (−1)j|01⟩+ (−1)i+j|10⟩+ (−1)i|11⟩

))

= H⊗2 H⊗2 (|i ⊕ j⟩ ⊗ |j⟩
)

= |i ⊕ j⟩ ⊗ |j⟩
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