Mathematical Logic II — Assignment 13

Due: Monday, January 31, 12:00

Exercise 1

The weak monadic second-order logic wMSO is an extension of FO by quantifiers over finite sets. Prove or disprove that for every wMSO-sentence φ there is an $L_{\omega_1\omega}$ -sentence ψ that has the same models as φ .

Exercise 2

Let \mathfrak{A} and \mathfrak{B} be ω -homogeneous τ -structures. Prove that $\mathfrak{A} \equiv_{\infty} \mathfrak{B}$ holds if and only if each type of \mathfrak{A} over the empty set that is realised in \mathfrak{A} is also a type of \mathfrak{B} that is realised in \mathfrak{B} , and vice versa.

Exercise 3

Consider the signature $\tau = \{E, P, R\}$ with relational symbols E and R of arity 2 and P of arity 1.

(a) Describe the class of graphs \mathcal{G} that satisfy the formula

 $\varphi(x,y) := \forall x'(Exx' \to \exists y'(Eyy' \land Rx'y')) \land \forall y'(Eyy' \to \exists x'(Exx' \land Rx'y'))$

- (b) Write an LFP-formula $\varphi(x) \in \text{LFP}(\tau)$ such that for each directed graph $\mathcal{G} = (V, E^{\mathcal{G}}, P^{\mathcal{G}})$ and each vertex $v \in V, \mathcal{G} \models \varphi(v)$ holds if and only if every terminal vertex that is reachable from v in \mathcal{G} is contained in $P^{\mathcal{G}}$.
- (c*) Write an LFP-formula $\varphi(x) \in \text{LFP}(\tau)$ such that for each directed graph $\mathcal{G} = (V, E^{\mathcal{G}}, P^{\mathcal{G}})$ and each vertex $v \in V$, $\mathcal{G} \models \varphi(v)$ holds if and only if there is an infinite path from v in \mathcal{G} with only finitely many vertices in $P^{\mathcal{G}}$.

5 Points

 $3 + 2 + 5^*$ Points

3 Points

WS 2010/11