Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik **RWTH** Aachen Prof. Dr. E. Grädel, R. Rabinovich

Mathematical Logic II — Assignment 12

Due: Monday, January 24, 12:00

Exercise 1

Find the least cardinal κ such that the class of all $\{<\}$ -structures which are isomorphic to $(\mathbb{Z},<)$ is axiomatizable in $L_{\kappa\omega}(<)$ or show that there no such cardinal.

Exercise 2

- (a) Prove that $L_{\omega_1\omega}(\tau)$ is uncountable for all signatures τ .
- (b) Construct an uncountable τ -structure \mathfrak{B} for a suitable countable signature τ such that for all *countable* structures \mathfrak{A} holds that $\mathfrak{A} \not\equiv_{L_{\omega_1 \omega}(\tau)} \mathfrak{B}$, i.e. \mathfrak{A} and \mathfrak{B} satisfy different sets of $L_{\omega_1\omega}(\tau)$ -sentences.

Exercise 3

For $k = 1, 2, \ldots$, we define the directed rooted tree \mathcal{T}_k inductively. \mathcal{T}_1 consists of disjoint finite paths of lengths $1, 2, 3, \ldots$ that start in the root. For k > 1, the tree \mathcal{T}_{k+1} is constructed from \mathcal{T}_1 by substituting each leaf of the tree with \mathcal{T}_k . Finally, \mathcal{T}'_k is constructed from \mathcal{T}_k by adding an infinite path that starts from the root. (See the picture.) Compute the least ordinal α such that $I_{\alpha}(\mathcal{T}_k, \mathcal{T}'_k) = \emptyset$ or prove that no such ordinal exists.

4 Points

Let τ be a finite relational signature and let \mathfrak{A} and \mathfrak{B} be τ -structures with $\mathfrak{A} \cong_{\infty} \mathfrak{B}$. Let $\langle \in \tau$ be a binary relation symbol such that $\langle^{\mathfrak{A}}$ is a well-order. Assume that the universes of \mathfrak{A} and \mathfrak{B} are sets. Prove that $\mathfrak{A} \cong \mathfrak{B}$.

 \mathcal{T}_k \mathcal{T}_k \mathcal{T}_k

1 + 4 Points

3 Points

4 Points

Exercise 5

For two linear orders (A, <) and (B, <), let $(A, <) \cdot (B, <) := (A \times B, <)$ where (a, b) < (a', b') if and only if b < b', or b = b' and a < a'. (Intuitively, $(A, <) \cdot (B, <)$ consists of |B| many copies of A that are written linearly next to each other.) For $0 < n < \omega$, let $(A, <)^n$ be defined by $(A, <)^1 := (A, <)$ and $(A, <)^n := (A, <)^n \cdot (A, <)$.

- (a) Compute the least ordinal α_n such that I has a winning strategy in $G_{\alpha_n}((\mathbb{Z}, <)^n, (\mathbb{Z}, <)^{n+1})$ and describe this strategy.
- (b) Compute the least ordinal α_n such that I has a winning strategy in $G_{\alpha_n}((\omega, <)^n, (\omega, <)^{n+1})$ and describe this strategy.