Mathematische Grundlagen der Informatik

RWTH Aachen
Prof. Dr. E. Grädel, R. Rabinovich

Mathematical Logic II - Assignment 12

Due: Monday, January 24, 12:00

Exercise 1

Find the least cardinal κ such that the class of all $\{<\}$-structures which are isomorphic to $(\mathbb{Z},<)$ is axiomatizable in $L_{\kappa \omega}(<)$ or show that there no such cardinal.

Exercise 2

$1+4$ Points
(a) Prove that $L_{\omega_{1} \omega}(\tau)$ is uncountable for all signatures τ.
(b) Construct an uncountable τ-structure \mathfrak{B} for a suitable countable signature τ such that for all countable structures \mathfrak{A} holds that $\mathfrak{A} \not \equiv_{L_{\omega_{1} \omega}(\tau)} \mathfrak{B}$, i.e. \mathfrak{A} and \mathfrak{B} satisfy different sets of $L_{\omega_{1} \omega}(\tau)$-sentences.

Exercise 3

4 Points
For $k=1,2, \ldots$, we define the directed rooted tree \mathcal{T}_{k} inductively. \mathcal{T}_{1} consists of disjoint finite paths of lengths $1,2,3, \ldots$ that start in the root. For $k>1$, the tree \mathcal{T}_{k+1} is constructed from \mathcal{T}_{1} by substituting each leaf of the tree with \mathcal{T}_{k}. Finally, \mathcal{T}_{k}^{\prime} is constructed from \mathcal{T}_{k} by adding an infinite path that starts from the root. (See the picture.) Compute the least ordinal α such that $I_{\alpha}\left(\mathcal{T}_{k}, \mathcal{T}_{k}^{\prime}\right)=\emptyset$ or prove that no such ordinal exists.

Exercise 4

4 Points
Let τ be a finite relational signature and let \mathfrak{A} and \mathfrak{B} be τ-structures with $\mathfrak{A} \cong \cong_{\infty} \mathfrak{B}$. Let $<\in \tau$ be a binary relation symbol such that $<^{\mathfrak{A}}$ is a well-order. Assume that the universes of \mathfrak{A} and \mathfrak{B} are sets. Prove that $\mathfrak{A} \cong \mathfrak{B}$.

Exercise 5

$$
5^{*}+5^{*} \text { Points }
$$

For two linear orders $(A,<)$ and $(B,<)$, let $(A,<) \cdot(B,<):=(A \times B,<)$ where $(a, b)<\left(a^{\prime}, b^{\prime}\right)$ if and only if $b<b^{\prime}$, or $b=b^{\prime}$ and $a<a^{\prime}$. (Intuitively, $(A,<) \cdot(B,<)$ consists of $|B|$ many copies of A that are written linearly next to each other.) For $0<n<\omega$, let $(A,<)^{n}$ be defined by $(A,<)^{1}:=(A,<)$ and $(A,<)^{n}:=(A,<)^{n} \cdot(A,<)$.
(a) Compute the least ordinal α_{n} such that I has a winning strategy in $G_{\alpha_{n}}\left((\mathbb{Z},<)^{n},(\mathbb{Z},<)^{n+1}\right)$ and describe this strategy.
(b) Compute the least ordinal α_{n} such that I has a winning strategy in $G_{\alpha_{n}}\left((\omega,<)^{n},(\omega,<)^{n+1}\right)$ and describe this strategy.

