Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, R. Rabinovich

Mathematical Logic II — Assignment 11

Due: Monday, January 17, 12:00

Exercise 1

4 Points

Let $T \subseteq FO(\tau)$ be a theory and let $\varphi, \psi \in FO(\tau)$. Prove that the following statements are equivalent.

- (a) There is some Π_1 -sentence $\vartheta \in FO(\tau)$ with $T \models \varphi \rightarrow \vartheta$ and $T \models \vartheta \rightarrow \psi$.
- (b) For all models \mathfrak{A} and \mathfrak{B} of T with $\mathfrak{A} \subseteq \mathfrak{B}$, if $\mathfrak{B} \models \varphi$ then $\mathfrak{A} \models \psi$.

Hint: Consider the set $\{\vartheta \in FO(\tau)_{\forall} \mid T \models \varphi \rightarrow \vartheta\}$ and use Corollary 2.4 from the Lecture Notes $(\mathfrak{A} \models T_{\forall} \text{ if and only if there exists some } \mathfrak{B} \supseteq \mathfrak{A} \text{ with } \mathfrak{B} \models T).$

Exercise 2

$$4 + (1 + 1 + 3) + 6^* + 3^* + 3 + 2$$
 Points

Let $\mathfrak{A} = (\mathbb{N}, S, 0)$ and let $\mathfrak{B} = (\mathbb{Q}, <)$.

- (a) Describe all principal complete 1-types of \mathfrak{A} (see Assingment 10 for a difinition of a principal type).
- (b) Consider 1-types of \mathfrak{B} .
 - (i) Give a 1-type that is realised in \mathbb{Q} .
 - (ii) Give a 1-type that is realised in \mathbb{R} , but not in \mathbb{Q} ,
 - (iii) Give three 1-types that are not realised in \mathbb{R} .
- (c*) Classify all complete 1-types of B.
 Hint: You may find useful that B permits quantifier elimination.
- (d*) Let p be a complete 1-type of \mathfrak{B} over some finite set $C \subseteq \mathbb{Q}$. Prove that p is a pricipal type. *Hint:* Solve (c) first.
 - (e) Classify all complete 1-types over the empty set of structures (X, f) where $f : X \to X$ is a bijection. Which of them are pricipal types?
 - (f) Classify all types over the empty set of (\mathbb{Z}, S) where S(z) = z + 1. Which of them are complete? Which are principal?

Exercise 3

2+3 Points

Are the following structures ω -saturated?

- (a) $(\mathbb{Q}, <),$
- (b) $(\mathbb{N} \times \mathbb{N}, \sim)$ where $(i, j) \sim (k, l)$ if and only if i + j = k + l.

For non-saturated structures give ω -saturated extensions.