Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik **RWTH** Aachen Prof. Dr. E. Grädel, R. Rabinovich

Mathematical Logic II — Assignment 10

Due: Monday, January 10, 12:00

Exercise 1

3 + 5 Points

Let $\mathfrak{A} \subseteq \mathfrak{B}$ be two τ -structures for a signature τ . Prove the following statements.

- (a) If for all finite sets $C \subseteq A$ and all $b \in B$ there exists an automorphism f on \mathfrak{B} such that f(c) = c for all $c \in C$ and $f(b) \in A$ then $\mathfrak{A} \preceq \mathfrak{B}$.
- (b) The converse does not hold.

Exercise 2

Let $T \subseteq FO(\tau)$ be a theory and let $\varphi, \psi \in FO(\tau)$ be sentences. Prove that the following statements are equivalent.

- (a) There is a Π_1 -sentence $\vartheta \in FO(\tau)$ such that $T \models \varphi \rightarrow \vartheta$ and $T \models \vartheta \rightarrow \psi$.
- (b) For all models $\mathfrak{A}, \mathfrak{B}$ of T with $\mathfrak{A} \subseteq \mathfrak{B}, \mathfrak{B} \models \varphi$ implies $\mathfrak{A} \models \psi$.

Hint: Consider the set $\{\vartheta \in FO(\tau) \mid \vartheta \text{ is a } \Pi_1\text{-sentence with } T \models \varphi \rightarrow \vartheta\}$.

Exercise 3

5 Points

Prove that a theory $T \subseteq FO(\tau)$ is model complete if and only if for each formula $\varphi(\overline{x}) \in FO(\tau)$ there is some Σ_1 -formula $\psi(\overline{x}) \in FO(\tau)$ with $T \models \forall \overline{x}(\varphi(\overline{x}) \leftrightarrow \psi(\overline{x}))$.

Hint: Consider the set $\Phi := \{ \psi(\overline{x}) \in FO(\tau) \mid \psi \in \Sigma_1 \text{ and } T \models \forall \overline{x}(\psi(\overline{x}) \to \varphi(\overline{x})) \}.$

Exercise 4

3 + 4 + 4 Points

Let \mathfrak{A} be a τ -structure and let $B \subseteq A$. An *n*-type *p* of \mathfrak{A} over *B* is a *principal type* if there exists a formula $\varphi(\bar{x}) \in p$ such that $\mathfrak{A}_B \models \forall \bar{x}(\varphi(\bar{x}) \to \psi(\bar{x}))$ for all $\psi(\bar{x}) \in p$.

- (a) Let p be a complete type of \mathfrak{A} over B that is realised by a tuple $\overline{b} \subseteq B$. Prove that p is a principal type.
- (b) Show that all principal types of \mathfrak{A} over B are realised in \mathfrak{A} .
- (c) Let \mathfrak{A} and \mathfrak{B} be two τ -structures with $\mathfrak{A} \subseteq \mathfrak{B}$. Prove that $\mathfrak{A} \preccurlyeq \mathfrak{B}$ holds if and only if all principal types of \mathfrak{B} over A are realised in \mathfrak{A} .

4 Points