Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, R. Rabinovich

Mathematical Logic II — Assignment 9

Due: Monday, December 20, 12:00

Exercise 1

2+2 Points

Let $T \subseteq FO(\tau)$ be a theory for a signature τ and let \mathcal{K} be the class of τ -structures closed under isomorphisms, i.e. if $\mathfrak{A} \cong \mathfrak{B}$ and $\mathfrak{A} \in \mathcal{K}$ then $\mathfrak{B} \in \mathcal{K}$. Let Mod(T) be the class of models of Tand let $Th(\mathcal{K})$ be the theory of \mathcal{K} , i.e. $Th(\mathcal{K}) = \bigcap_{\mathfrak{A} \in \mathcal{K}} Th(\mathfrak{A})$. Prove or disprove:

- (a) $Mod(Th(\mathcal{K})) = \mathcal{K}$,
- (b) $\operatorname{Th}(\operatorname{Mod}(T)) = T$.

Exercise 2

2+3+3 Points

A theory $T \subseteq FO(\tau)$ is model complete if for arbitrary τ -structures \mathfrak{A} and \mathfrak{B} with $\mathfrak{A}, \mathfrak{B} \models T$, $\mathfrak{A} \subseteq \mathfrak{B}$ implies $\mathfrak{A} \preceq \mathfrak{B}$.

- (a) Let $T \subseteq FO(\tau)$ be a model complete theory and let \mathfrak{A} be a finite model of T. Prove that there is no proper extension $\mathfrak{B} \supseteq \mathfrak{A}$ with $\mathfrak{B} \models T$.
- (b) Prove or disprove the model completeness of the theories Th(N, S) where S is the successor function and Th(Z, <).</p>
- (c) Prove that all complete theories over the signature $\sigma = \{P\}$ with one unary relation symbol P are model complete.

Hint: What are the complete theories over σ ?

Exercise 3

 $3 + 3 + 4 + 6^*$ Points

A theory $T \subseteq FO(\tau)$ permits quantifier elimination if for each formula $\varphi(\overline{x}) \in FO(\tau)$ there exists a quantifier free formula $\vartheta(\overline{x}) \in FO(\tau)$ such that $T \models \forall \overline{x}(\varphi(\overline{x}) \leftrightarrow \vartheta(\overline{x}))$.

- (a) Prove that a theory $T \subseteq FO(\tau)$ permits quantifier elimination if and only if for every quantifier free formula $\psi(\overline{x}, y) \in FO(\tau)$ there is a quantifier free formula $\vartheta(\overline{x}) \in FO(\tau)$ such that $T \models \forall \overline{x} (\exists y \psi(\overline{x}, y) \leftrightarrow \vartheta(\overline{x})).$
- (b) Let $T \subseteq FO(\tau)$ be a theory that permits quantifier elimination. Prove that T is model complete.
- (c) Let $T \subseteq FO(\tau)$ be a theory that permits quantifier elimination where τ is a signature without constants. Prove that T is complete.
- (d*) Prove that the theory of dense linear orders permits quantifier elimination. *Hint:* Use the dijunctive normal form to represent the quantifier free formulae over <.</p>

Exercise 4

4 Points

An elementary chain is a sequence $(\mathfrak{A}_{\beta})_{\beta < \alpha}$ of structures with $\mathfrak{A}_{\gamma} \preceq \mathfrak{A}_{\beta}$ for all $\gamma < \beta < \alpha$. Let $(\mathfrak{A}_{\beta})_{\beta < \alpha}$ an elementary chain. Prove that $\mathfrak{A}_{\beta} \preceq \bigcup_{\beta < \alpha} \mathfrak{A}_{\beta}$ holds for $\beta < \alpha$.

http://logic.rwth-aachen.de/Teaching/MaLo2-WS10