Prof. Dr. E. Grädel, R. Rabinovich

Mathematical Logic II — Assignment 8

Due: Monday, December 13, 12:00

Exercise 1

Prove that a recursively enumerable theory T is decidable, if it has only finitely many complete extensions $T' \supseteq T$.

Exercise 2

We define a sequence $(\Phi)_{i\in\omega}$ of extremsions of Peano arithmetic by

(1)
$$\Phi_0 = \Phi_{PA},$$

(2) $\Phi_{i+1} = \Phi_i \cup \{ \operatorname{Cons}_{\Phi_i} \},$

(3) $\Phi_{\omega} = \bigcup_{i < \omega} \Phi_i$,

where Φ_{PA} is the axiom system of Peano arithmetic and $Cons_{\Phi_i}$ is a formula that expresses that Φ_i is consistent.

- (a) Prove that all Φ_i are consistent.
- (b) Prove that Φ_{ω} is consistent.
- (c) Resolve the following paradox. We extend the sequence by:
 - (2') $\Phi_{\alpha+1} = \Phi_{\alpha} \cup \{ \operatorname{Cons}_{\Phi_{\alpha}} \},$
 - (3') $\Phi_{\lambda} = \bigcup \Phi_{\alpha < \lambda}$ for limit ordinals λ .

As there are only countably many formulae, there is a fixed-point Φ_{∞} of the sequence $(\Phi_{\alpha})_{\alpha\in On}$, thus $\Phi_{\infty} = \Phi_{\infty} \cup \{Cons_{\infty}\}$. Then we have $\Phi_{\infty} \vdash Cons_{\infty}$, which contradicts the second Gödel's Theorem.

Exercise 3*

Resolve the following paradox. Let Φ_{PA} be the axiom system of Peano arithmetic and let $Cons_{\Phi_{PA}}$ be the formula that expresses the consistency of Φ_{PA} (as defined in the lecture). Let Φ be the formula $\Phi = \Phi_{PA} \cup \{\neg Cons_{\Phi_{PA}}\}$. As $\Phi_{PA} \not\vdash Cons_{\Phi_{PA}}$, it follows that Φ is consistent. On the other hand, Φ proves that Φ_{PA} is not consistent: $\Phi \vdash \neg Cons_{\Phi_{PA}}$, as $\neg Cons_{\Phi_{PA}} \in \Phi$. But then Φ is all the more inconsistent.

Exercise 4

2 + 4 + 2 + 2 Points

Let $\mathfrak{A} \subseteq \mathfrak{B} \subseteq \mathfrak{C}$ be three τ -structures for a signature τ . Prove or disprove the following statements:

- (a) Let $\mathfrak{A} \preceq \mathfrak{B}$ and let A be finite or B be finite. Then $\mathfrak{A} = \mathfrak{B}$.
- (b) If $\mathfrak{A} \leq \mathfrak{C}$ then $\mathfrak{A} \leq \mathfrak{B}$.
- (c) If $\mathfrak{A} \leq \mathfrak{C}$ and $\mathfrak{B} \leq \mathfrak{C}$ then $\mathfrak{A} \leq \mathfrak{B}$.
- (d) If $\mathfrak{A} \cong \mathfrak{B}$ then $\mathfrak{A} \preceq \mathfrak{B}$.

3 Points

3 + 3 + 6 Points

 6^* Points

Mathematic