Prof. Dr. E. Grädel, R. Rabinovich

Mathematical Logic II - Assignment 8

Due: Monday, December 13, 12:00

Exercise 1

Prove that a recursively enumerable theory T is decidable, if it has only finitely many complete extensions $T^{\prime} \supseteq T$.

Exercise 2

$$
3+3+6 \text { Points }
$$

We define a sequence $(\Phi)_{i \in \omega}$ of extrensions of Peano arithmetic by
(1) $\Phi_{0}=\Phi_{P A}$,
(2) $\Phi_{i+1}=\Phi_{i} \cup\left\{\operatorname{Cons}_{\Phi_{i}}\right\}$,
(3) $\Phi_{\omega}=\bigcup_{i<\omega} \Phi_{i}$,
where $\Phi_{P A}$ is the axiom system of Peano arithmetic and $\operatorname{Cons}_{\Phi_{i}}$ is a formula that expresses that Φ_{i} is consistent.
(a) Prove that all Φ_{i} are consistent.
(b) Prove that Φ_{ω} is consistent.
(c) Resolve the following paradox. We extend the sequence by:
$\left(2^{\prime}\right) \Phi_{\alpha+1}=\Phi_{\alpha} \cup\left\{\operatorname{Cons}_{\Phi_{\alpha}}\right\}$,
$\left(3^{\prime}\right) \Phi_{\lambda}=\bigcup \Phi_{\alpha<\lambda}$ for limit ordinals λ.
As there are only countably many formulae, there is a fixed-point Φ_{∞} of the sequence $\left(\Phi_{\alpha}\right)_{\alpha \in \mathrm{On}}$, thus $\Phi_{\infty}=\Phi_{\infty} \cup\left\{\mathrm{Cons}_{\infty}\right\}$. Then we have $\Phi_{\infty} \vdash \mathrm{Cons}_{\infty}$, which contradicts the second Gödel's Theorem.

Exercise 3*

6* Points
Resolve the follownig paradox. Let Φ_{PA} be the axiom system of Peano arithmetic and let $\operatorname{Cons}_{\Phi_{\text {PA }}}$ be the formula that expresses the consistency of $\Phi_{\text {PA }}$ (as defined in the lecture). Let Φ be the formula $\Phi=\Phi_{\mathrm{PA}} \cup\left\{\neg \operatorname{Cons}_{\Phi_{\mathrm{PA}}}\right\}$. As $\Phi_{\mathrm{PA}} \nvdash \mathrm{Cons}_{\Phi_{\mathrm{PA}}}$, it follows that Φ is consistent. On the other hand, Φ proves that Φ_{PA} is not consistent: $\Phi \vdash \neg \operatorname{Cons}_{\Phi_{\mathrm{PA}}}$, as $\neg \operatorname{Cons}_{\Phi_{\mathrm{PA}}} \in \Phi$. But then Φ is all the more inconsistent.

Exercise 4

$$
2+4+2+2 \text { Points }
$$

Let $\mathfrak{A} \subseteq \mathfrak{B} \subseteq \mathfrak{C}$ be three τ-structures for a signature τ. Prove or disprove the following statements:
(a) Let $\mathfrak{A} \preceq \mathfrak{B}$ and let A be finite or B be finite. Then $\mathfrak{A}=\mathfrak{B}$.
(b) If $\mathfrak{A} \preceq \mathfrak{C}$ then $\mathfrak{A} \preceq \mathfrak{B}$.
(c) If $\mathfrak{A} \preceq \mathfrak{C}$ and $\mathfrak{B} \preceq \mathfrak{C}$ then $\mathfrak{A} \preceq \mathfrak{B}$.
(d) If $\mathfrak{A} \cong \mathfrak{B}$ then $\mathfrak{A} \preceq \mathfrak{B}$.

