Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, R. Rabinovich

Mathematical Logic II — Assignment 6

Due: Monday, November 29, 12:00

Exercise 1

Show using the Axiom of Choice that for all sets a and b there is an injective function $f: a \to b$ or $f: b \to a$.

Exercise 2

Compute the cardinality of the following sets:

- (a) $\{\alpha \in \text{On} \mid \alpha \text{ is a successor cardinal} < \aleph_1\},\$
- (b) $\{\alpha \in On \mid \alpha \text{ is a limit ordinal} < \aleph_1\}.$

Exercise 3

A set x is Dedekind-finite if no proper subset of x has the same cardinality as x. Prove or disprove:

- (a) The set x is Dedekind-finite if and only if it is finite.
- (b) The set x is finite if and only if every function $f: x \to x$ that is surjective or injective is already bijective.

Exercise 4*

Let x be a set with $|x| \leq \kappa$ for some $\kappa \in Cn^{\infty}$ (where Cn^{∞} is the class of limit cardinals). Let $|y| \leq \kappa$ for all $y \in x$. Prove that $|\bigcup x| \leq \kappa$.

Exercise 5

 $5^* + 2 + 2 + 2 + 2 + 2 + 2 + 5^*$ Points

Let A be a set and let \leq be a linear order on A. A subset X of A is cofinal in A if for every $a \in A$ there is some $x \in X$ such that $a \leq x$ holds. Let α be an ordinal. The cofinality $cf(\alpha)$ of α is the least ordinal such that there is a function $f : cf(\alpha) \to \alpha$ with a non-bounded image in α . (That means, for all $\gamma \in \alpha$ there is some $\delta \in cf(\alpha)$ such that $f(\delta) \geq \gamma$.) An ordinal α is regular if α is a limit ordinal and $cf(\alpha) = \alpha$.

- (a^{*}) Prove that every linear order (A, \leq) has a cofinal well-founded subset.
- (b) Compute $cf(\alpha)$ for $\alpha = \omega$, $\alpha = \omega \cdot 2$ and for every successor ordinal α .
- (c) Prove that $cf(\alpha)$ is a limit ordinal if α is a limit ordinal.
- (d) Prove that for every $\alpha \in On$ there is a strongly monotone function $f : cf(\alpha) \to \alpha$ that is unbounded in α .
- (e) Prove that $cf(cf(\alpha)) = cf(\alpha)$ holds for all $\alpha \in On$.
- (f) Prove that $cf(\alpha) \in Cn$ holds for all $\alpha \in On$.
- (g) Prove that $cf(\aleph_{\omega}) = \omega$.
- (h^{*}) Prove that all infinite successor cardinals are regular.

2 + 2 Points

3 + 3 Points

3 Points

 4^* Points