Prof. Dr. E. Grädel, R. Rabinovich

Mathematical Logic II - Assignment 5

Due: Monday, November 22, 12:00

Exercise 1

$$
(2+3+1+4)+2 \text { Points }
$$

(a) Let a be a nonempty set of ordinals.
(i) What are $\bigcup a$ and $\bigcap a$ for $a=\{\emptyset\}, a=\{n \in \omega \mid n$ odd $\}, a=\omega$ and $a=\omega \cup\{\omega\}$?
(ii) Prove that $\bigcup a$ is an ordinal and describe it in terms of arithmetical operations and the canonical order on $\mathfrak{O n}$.
(iii) Give a corresponding description for $\bigcap a$.
(iv) Prove that

$$
\alpha=\bigcup \alpha \Longleftrightarrow \alpha \text { is a limit ordinal }
$$

holds for every ordinal α.
(b) Let a be a class of ordinals. Give a sufficient and necessary condition for sup a to be an ordinal.

Exercise 2

12 Points
Compute the following expressions:
(a) $(((1+\omega)+1)+\omega)+1$,
(a) $(2 \cdot(\omega+1)) \cdot \omega$,
(b) $(((2 \cdot \omega) \cdot 2) \cdot \omega) \cdot 2$,
(b) $2 \cdot(\omega+1) \cdot 2$,
(c) $\sup \{n+m \mid m, n \in \omega\}$,
(c) $\bigcup \omega$,
(d) $\sup \{\omega+n \mid n \in \omega\}$,
(d) $\bigcup\{\omega\}$,
(e) $\sup \{\omega \cdot n \mid n \in \omega\}$,
(e) $\bigcup\{n \in \omega \mid n$ gerade $\}$,
(f) $\sup \{\omega \cdot n+3 \mid n \in \omega\}$,
(f) $\sup \left\{\omega^{n}+\omega \mid n \in \omega\right\}$.

Exercise 3

4 Points
We consider the following variants of the Axiom of Choice:
$\mathbf{A C}$ * For every set x there exists a choice function on $\mathcal{P}(x)$.
KP: For every family $\left(X_{i}\right)_{i \in I}$ of nonempty sets, the cartesian product $\Pi_{i \in I} X_{i}$ is not empty.
ER: Every equivalence relation on a set x has a set of class representatives.
(a) Formalise the notions used in these statements.
(b) Prove that $\mathbf{A C} \mathbf{C}^{*}, \mathbf{K P}$, and $\mathbf{E R}$ are equivalent to the Axiom of Choice (on the basis of ZF).

Exercise 4*

A (totally) ordered class $\langle A, \leq\rangle$ is perfectly ordered if it satisfies the following conditions:

- A has a least element;
- each element of A has an unambigous successor (except the greatest one, if there is any);
- each element of A is a finite successor (via finitely many steps) of either the least element of A or of a limit element of A (an element without any direct ancestor in A).

Prove that each well-ordered class is perfectly ordered, but the converse doesn't hold.

