Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, R. Rabinovich

Mathematical Logic II — Assignment 5

Due: Monday, November 22, 12:00

Exercise 1

- (a) Let a be a nonempty set of ordinals.
 - (i) What are $\bigcup a$ and $\bigcap a$ for $a = \{\emptyset\}$, $a = \{n \in \omega \mid n \text{ odd}\}$, $a = \omega$ and $a = \omega \cup \{\omega\}$?
 - (ii) Prove that $\bigcup a$ is an ordinal and describe it in terms of arithmetical operations and the canonical order on \mathfrak{On} .
 - (iii) Give a corresponding description for $\bigcap a$.
 - (iv) Prove that

$$\alpha = \bigcup \alpha \iff \alpha$$
 is a limit ordinal

holds for every ordinal α .

(b) Let a be a class of ordinals. Give a sufficient and necessary condition for $\sup a$ to be an ordinal.

Exercise 2

Compute the following expressions:

(a) $(((1 + \omega) + 1) + \omega) + 1$,(a) $(2 \cdot (\omega + 1)) \cdot \omega$,(b) $(((2 \cdot \omega) \cdot 2) \cdot \omega) \cdot 2$,(b) $2 \cdot (\omega + 1) \cdot 2$,(c) $\sup\{n + m \mid m, n \in \omega\}$,(c) $\bigcup \omega$,(d) $\sup\{\omega + n \mid n \in \omega\}$,(d) $\bigcup\{\omega\}$,(e) $\sup\{\omega \cdot n \mid n \in \omega\}$,(e) $\bigcup\{n \in \omega \mid n \text{ gerade}\}$,(f) $\sup\{\omega \cdot n + 3 \mid n \in \omega\}$,(f) $\sup\{\omega^n + \omega \mid n \in \omega\}$.

Exercise 3

We consider the following variants of the Axiom of Choice:

AC^{*}: For every set x there exists a choice function on $\mathcal{P}(x)$.

KP: For every family $(X_i)_{i \in I}$ of nonempty sets, the cartesian product $\prod_{i \in I} X_i$ is not empty.

ER: Every equivalence relation on a set x has a set of class representatives.

- (a) Formalise the notions used in these statements.
- (b) Prove that AC*, KP, and ER are equivalent to the Axiom of Choice (on the basis of ZF).

http://logic.rwth-aachen.de/Teaching/MaLo2-WS10

(2+3+1+4) + 2 Points

12 Points

4 Points

Exercise 4^*

A (totally) ordered class $\langle A, \leq \rangle$ is *perfectly ordered* if it satisfies the following conditions:

- A has a least element;
- each element of A has an unambigous successor (except the greatest one, if there is any);
- each element of A is a finite successor (via finitely many steps) of either the least element of A or of a limit element of A (an element without any direct ancestor in A).

Prove that each well-ordered class is perfectly ordered, but the converse doesn't hold.