Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, R. Rabinovich

Mathematical Logic II — Assignment 4

Due: Monday, November 15, 12:00

Exercise 1

1 + 2 + 2 + 2 Points

One can define the pair (x, y) of the sets x and y as $\{\{x\}, \{x, y\}\}$. A formalisation of triples (a, b, c) as sets x_{abc} is adequate if $(a, b, c) = (a', b', c') \Leftrightarrow x_{abc} = x_{a'b'c'}$. Are the following formalisations of triples adequate:

- (a) (x, y, z) = ((x, y), z),
- (b) $(x, y, z) = \{\{x, [0]\}, \{y, [1]\}, \{z, [2]\}\},\$

(c)
$$(x, y, z) = \{a, \{b\}, \{\{c\}\}\},\$$

(d) $(x, y, z) = \{\{x\}, \{x, y\}, \{x, y, z\}\}$?

Exercise 2

For classes A, B and C, let $R \subseteq A \times B$ and $S \subseteq B \times C$ be binary relations. The *composition* $S \circ R \subseteq A \times C$ of R and S is defined by

$$S \circ R = \{ \langle a, c \rangle \mid \text{ there is some } b \in B \text{ with } \langle a, b \rangle \in R \text{ and } \langle b, c \rangle \in S \}$$

We define the relation id_A by $\{\langle a, a \rangle \mid a \in A\}$. Let $R^{-1} = \{\langle b, a \rangle \mid \langle a, b \rangle \in R\}$. Prove or disprove that $R^{-1} \circ R = \operatorname{id}_A$ holds for all relations $R \subseteq A \times B$.

Exercise 3

Let (A, \leq) be an ordering and $X \subseteq A$. An element $a \in A$ is a *lower bound* of X if $a \leq x$ for all $x \in X$. If a is a lower bound of X and $a \geq b$ for all lower bounds b of X then a is an *infimum* of X. An element $a \in A$ is *minimal* if there is no element $c \in A$ with $c \leq a$ and $c \neq a$.

We consider (B, \subseteq) with $B = \{x \subseteq \omega \mid x \text{ is finite or } \omega \setminus x \text{ is finite}\}$. (Formally, a set x is finite if there is a bijection $f : x \to n$ from this set in a natural number $n \in \omega$.)

Is there a subset of B without a minimal element? Construct a subset of B that has a lower bound, but no infimum.

Exercise 4

3 + 3 Points

Let A be a class. A *closure operator* on A is a function $c : \mathcal{P}(A) \to \mathcal{P}(A)$, such that for all $x, y \in \mathcal{P}(A)$ holds:

- $x \subseteq c(x)$,
- c(c(x)) = c(x) und

2 Points

3 Points

• $x \subseteq y$ implies $c(x) \subseteq c(y)$.

Let (A, \leq) be a partial ordering. An *upper bound* is defined analogously to the lower bound. We define for sets $X \subseteq A$:

- $U(X) = \{a \in A \mid a \text{ is an upper bound for } x\}$ and
- $L(X) = \{a \in A \mid a \text{ is a lower bound for } x\}.$

Prove or disprove:

- (a) $c: X \mapsto L(U(X))$ is a closure operator on A.
- (b) Building transitive closure $TC: X \mapsto TC(X)$ is a closure operator on A.