Prof. Dr. E. Grädel, R. Rabinovich

Mathematical Logic II - Assignment 4

Due: Monday, November 15, 12:00

Exercise 1

$$
1+2+2+2 \text { Points }
$$

One can define the pair (x, y) of the sets x and y as $\{\{x\},\{x, y\}\}$. A formalisation of triples (a, b, c) as sets $x_{a b c}$ is adequate if $(a, b, c)=\left(a^{\prime}, b^{\prime}, c^{\prime}\right) \Leftrightarrow x_{a b c}=x_{a^{\prime} b^{\prime} c^{\prime}}$. Are the following formalisations of triples adequate:
(a) $(x, y, z)=((x, y), z)$,
(b) $(x, y, z)=\{\{x,[0]\},\{y,[1]\},\{z,[2]\}\}$,
(c) $(x, y, z)=\{a,\{b\},\{\{c\}\}\}$,
(d) $(x, y, z)=\{\{x\},\{x, y\},\{x, y, z\}\} ?$

Exercise 2

2 Points
For classes A, B and C, let $R \subseteq A \times B$ and $S \subseteq B \times C$ be binary relations. The composition $S \circ R \subseteq A \times C$ of R and S is defined by

$$
S \circ R=\{\langle a, c\rangle \mid \text { there is some } b \in B \text { with }\langle a, b\rangle \in R \text { and }\langle b, c\rangle \in S\}
$$

We define the relation id_{A} by $\{\langle a, a\rangle \mid a \in A\}$. Let $R^{-1}=\{\langle b, a\rangle \mid\langle a, b\rangle \in R\}$. Prove or disprove that $R^{-1} \circ R=\mathrm{id}_{A}$ holds for all relations $R \subseteq A \times B$.

Exercise 3

3 Points
Let (A, \leq) be an ordering and $X \subseteq A$. An element $a \in A$ is a lower bound of X if $a \leq x$ for all $x \in X$. If a is a lower bound of X and $a \geq b$ for all lower bounds b of X then a is an infimum of X. An element $a \in A$ is minimal if there is no element $c \in A$ with $c \leq a$ and $c \neq a$.

We consider (B, \subseteq) with $B=\{x \subseteq \omega \mid x$ is finite or $\omega \backslash x$ is finite $\}$. (Formally, a set x is finite if there is a bijection $f: x \rightarrow n$ from this set in a natural number $n \in \omega$.)

Is there a subset of B without a minimal element? Construct a subset of B that has a lower bound, but no infimum.

Exercise 4

$$
3+3 \text { Points }
$$

Let A be a class. A closure operator on A is a function $c: \mathcal{P}(A) \rightarrow \mathcal{P}(A)$, such that for all $x, y \in \mathcal{P}(A)$ holds:

- $x \subseteq c(x)$,
- $c(c(x))=c(x)$ und
- $x \subseteq y$ implies $c(x) \subseteq c(y)$.

Let (A, \leq) be a partial ordering. An upper bound is defined analogously to the lower bound. We define for sets $X \subseteq A$:

- $U(X)=\{a \in A \mid a$ is an upper bound for $x\}$ and
- $L(X)=\{a \in A \mid a$ is a lower bound for $x\}$.

Prove or disprove:
(a) $c: X \mapsto L(U(X))$ is a closure operator on A.
(b) Building transitive closure $\mathrm{TC}: X \mapsto \mathrm{TC}(X)$ is a closure operator on A.

