4 Points

4 Points

Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, R. Rabinovich

Mathematical Logic II — Assignment 2

Let $a \in HF_n$ for some $n \in \mathbb{N}$. We define $a_0 := a$ and $a_{i+1} = \operatorname{acc}(a_i)$ for $i \in \mathbb{N}$. Prove that there exists some $k \in \mathbb{N}$ with $a_{k+1} = a_k$ and show further that a_k is hereditary and transitive.

Due: Tuesday, November 2, 12:00

Exercise 1

Exercise 3

limit stages.

Exercise 2

The cut of a class A is $cut(A) = \{x \in A \mid S(x) \subseteq S(y) \text{ for all } y \in A \}$. Let a be a set and $\mathbb{S} = \{x \mid x = x\}$ the class of all sets. Compute $cut(\mathbb{S})$ and $cut(\{x \mid a \in x\})$.

Show that the class HF of hereditary finite sets and the class $\mathbb{S} = \{x \mid x = x\}$ of all sets are

Exercise 4

- (a) Every stage is hereditary and transitive. Give a set which is hereditary and transitive, but not a stage.
- (b) It follows from the Axiom of Creation that for every set x, the union $\bigcup x = \{z \in S(x) \mid$ there is some $y \in x$ with $z \in y$ } exists. Prove or disprove that the union (the intersection) of a set of stages is a stage. Prove or disprove that the union of a set of histories is a history.
- (c)* Consider an arbitrary transitive set x which is linearly ordered by \in . A *prefix* of x is a transitive subset of x. Show that a subset $y \subseteq x$ is a prefix of x if and only if $y \in x$ or y = x.

WS 2010/11

5 Points

 $3 + 4 + 6^*$ Points