Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, R. Rabinovich

Mathematical Logic II — Assignment 1

Due: Monday, October 25, 12:00

Exercise 1

Show that in any model (\mathbb{S}, \in) of any axiom system of set theory, the class of those sets x that do not have any element y with $x \in y$ is a proper class (not a set). What about the case where $\mathbb{S} = \{\emptyset\}$?

Exercise 2

Recall the definiton of hereditary finite sets: $HF_0 = \emptyset$ and $HF_{n+1} = \{x \mid x \subseteq HF_n\}$.

- (a) Prove the following properties of hereditary finite sets.
 - (i) $\operatorname{HF}_n \subseteq \operatorname{HF}_{n+1}$ and $\operatorname{HF}_n \in \operatorname{HF}_{n+1}$
 - (ii) HF_n has finitely many elements.
- (b) Consider the graph $\mathcal{G} = (\mathrm{HF}, E)$ with $E = \{(x, y) \mid x \in y \text{ or } y \in x\}$.
 - (i) What is the diameter of \mathcal{G} ?
 - (ii) Show that for all pairwise different $a_1, \ldots, a_n, b_1, \ldots, b_m \in HF$ there exists a $z \in HF$ that is connected with all a_1, \ldots, a_n , but with no b_1, \ldots, b_m via an edge in \mathcal{G} .

Exercise 3

1 + (1 + 1) + 4 Points

- (a) Recall the definition of the sets [n] representing natural numbers: $[0] = \emptyset$, $[n + 1] = \{[0], \ldots, [n]\}$. Write the natural number [4] in the set notation (using symbols $\{, \}, \emptyset$ and commata).
- (b) A set x is *transitive* if for all $y \in x$ we have $y \subseteq x$.
 - (i) Prove or disprove that a set x is transitive if and only if for all $y \in x$ and all $z \in y$ we have $z \in x$.
 - (ii) Prove or disprove that the relation \in on a transitive set is transitive in the usual sense.
- (c) Show that every natural number is transitive. Show further that \in is transitive on every natural number and on the set of natural numbers.

Exercise 4*

Show that a set is hereditary finite if and only if its transitive closure is finite.

http://logic.rwth-aachen.de/Teaching/MaLo2-WS10

4 Points

(2+2) + (2+4) Points

 7^* Points