Definition 1. Let *A* be a class.

- A is transitive if $x \in y \in A$ implies $x \in A$.
- A is hereditary if $x \subseteq y \in A$ implies $x \in A$.
- $\operatorname{acc}(A) = \{x \mid \text{ there is some } y \in A \text{ such that } x \in y \text{ or } x \subseteq y\}.$

Exercise 1

Prove Lemma 2.2 from the lecture notes.

Lemma 2 . Let *A* be a class and *b* and *c* sets. The following statements are equivalent:

- (a) $c \in b \in A$ implies $c \in A$, i.e. A is transitive.
- (b) $b \in A$ implies $b \subseteq A$.
- (c) $b \in A$ implies $b \cap A = b$.

Exercise 2

Prove Lemma 2.3 from the lecture notes.

Lemma 3 . Let A and B be classes.

- (a) If B is hereditary transitive and $A \subseteq B$ then $\operatorname{acc}(A) \subseteq B$.
- (b) A is hereditary transitive if and only if acc(A) = A.

Exercise 3

Let *a*, *b* be sets and *A*, *B* be proper nonempty classes. Let φ be a property. Which of the following classes are sets: $a \cap B$, $\{x \in B \mid x \in a, \varphi\}$, $\{x \in b \mid x \in A, \varphi\}$, $a \setminus B$, $A \cap B$, $\cap B$?

Exercise 4

It follows from the Axiom of Creation that for every set x there exists a transitive set y with $x \subseteq y$. Show that then there is an unambigous *least* transitive set TC(x) such that $x \subseteq TC(x)$ holds. (TC = Transitive Closure) *Hint* Intuitively, $TC(x) = x \cup \bigcup x \cup \bigcup \bigcup x \ldots$