Quantum Computing WS 2009/10

Prof. Dr. Erich Grädel

Mathematische Grundlagen der Informatik RWTH Aachen

This work is licensed under:

http://creativecommons.org/licenses/by-nc-nd/3.0/de/

Dieses Werk ist lizenziert unter:

http://creativecommons.org/licenses/by-nc-nd/3.0/de/

© 2010 Mathematische Grundlagen der Informatik, RWTH Aachen.

http://www.logic.rwth-aachen.de

Contents

1	Introduction	
1.1	Historical overview	
1.2	An experiment	2
1.3	Foundations of quantum mechanics	3
1.4	Quantum gates and quantum gate arrays	
2	Universal Quantum Gates	19
3	Quantum Algorithms	25
3.1	The Deutsch-Jozsa algorithm	25
3.2	Grover's search algorithm	2
3.3	Fourier transformation	34
3.4	Quantum Fourier transformation	42
3.5	Shor's factorisation algorithm	46

3 Quantum Algorithms

3.1 The Deutsch-Jozsa algorithm

Suppose that your task is to decide whether a function $f:\{0,1\}^n \to \{0,1\}$ is either constantly equal to 0 or it is *balanced*, i.e. f(x)=1 for precisely half of all inputs $x \in \{0,1\}^n$ (either one of these two cases is guaranteed to hold). If you decide correctly, you are awarded $1\,000\,\text{€}$. On the other hand, a false answer is fatal. To help you find the right answer, you can repeatedly ask for the value of f for a given input f. Each such query will set you back f.

Classically, there is a good chance to find the right answer by drawing an input x uniformly at random. Clearly, if f(x) = 1, you can be sure that f is balanced. On the other hand, if f is balanced, then the probability that f(x) = 0 for k inputs, chosen uniformly at random, is $1/2^k$, which converges to 0 exponentially fast. However, unless you query more than 2^{n-1} many inputs or get the answer that f(x) = 1, you cannot be sure of your answer.

Suppose now that you may query a QGA on n+1 qubits for computing the function U_f defined by 1

$$U_f|x\rangle|j\rangle=|x\rangle|f(x)\oplus j\rangle.$$

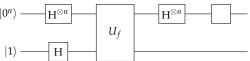
Clearly, QGAs are more expensive than classical circuits, so let us say that each application of U_f costs 500 ϵ . Can you get the correct answer and still make money in this case?

Surprisingly, the answer is *yes* since there exists a QGA that decides whether f is balanced with just one application of U_f :

¹Note that U_f has to be unitary.

3.1 The Deutsch-Jozsa algorithm 3 Quantum Algorithms

Measurement



Let us examine what the circuit does: First, the vector $|0^n\rangle \otimes |1\rangle$ is mapped by $H^{\otimes n+1}$ to

$$\frac{1}{\sqrt{2^{n+1}}}\sum_{x\in\{0,1\}^n}|x\rangle\otimes(|0\rangle-|1\rangle).$$

Second, the QGA for U_f is applied to this vector, which yields the vector

$$\frac{1}{\sqrt{2^{n+1}}} \sum_{x \in \{0,1\}^n} (|x\rangle \otimes (-1)^{f(x)} (|0\rangle - |1\rangle)$$

$$= \left(\sum_{x \in \{0,1\}^n} \frac{(-1)^{f(x)} |x\rangle}{\sqrt{2^n}}\right) \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}$$

$$= \left(\sum_{x \in \{0,1\}^n} \frac{(-1)^{f(x)} |x\rangle}{\sqrt{2^n}}\right) \otimes H |1\rangle$$

$$=:|\psi_f\rangle$$

To see what is the result of $H^{\otimes n} | \psi_f \rangle$, note that for $x \in \{0,1\}$, we can write $H|x\rangle$ as follows:

$$H|x\rangle = \frac{1}{\sqrt{2}} (|0\rangle + (-1)^x |1\rangle)$$
$$= \frac{1}{\sqrt{2}} \sum_{z \in \{0,1\}} (-1)^{xz} |z\rangle.$$

Analogously, for $x = x_1 \cdots x_n \in \{0,1\}^n$, we have

$$H^{\otimes n} |x\rangle = \frac{1}{\sqrt{2^n}} \sum_{z=z_1\cdots z_n \in \{0,1\}^n} (-1)^{x_1 z_1 + \cdots + x_n z_n} |z\rangle$$
$$= \frac{1}{\sqrt{2^n}} \sum_{z \in \{0,1\}^n} (-1)^{x \cdot z} |z\rangle.$$

Hence,

$$\begin{split} \mathbf{H}^{\otimes n} | \psi_f \rangle &= \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} \mathbf{H}^{\otimes n} | x \rangle \\ &= \frac{1}{2^n} \sum_{x \in \{0,1\}^n} \sum_{z \in \{0,1\}^n} (-1)^{f(x) + x \cdot z} | z \rangle \\ &= \frac{1}{2^n} \sum_{z \in \{0,1\}^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x) + x \cdot z} | z \rangle \,. \end{split}$$

In particular, the amplitude of the basis vector $|0^n\rangle$ in $\mathrm{H}^{\otimes n} |\psi_f\rangle$ is $\frac{1}{2^n}\sum_{x\in\{0,1\}^n}(-1)^{f(x)}$. If $f\equiv 0$, then this amplitude is equal to 1 and, with probability 1, the final measurement yields $|0^n\rangle$. On the other hand, if f is balanced, then the amplitude of $|0^n\rangle$ is 0 and, with probability 1, the final measurement yields a basis vector different from $|0^n\rangle$.

3.2 Grover's search algorithm

While the Deutsch-Jozsa algorithm arguably solves an artificial problem, Grover's algorithm solves a canonical search problem: This time, the task is to find, given an arbitrary Boolean function $f: \{0,1\}^n \to \{0,1\}$, an input x with f(x) = 1 (or to determine that there is no such input). Classically, there is no better way than to test each input, which requires 2^n queries to f in the worst case. Grover showed that if one has access to a QGA for computing the function

$$U_f: H_{2^{n+1}} \to H_{2^{n+1}}|x\rangle \otimes |j\rangle \mapsto |x\rangle \otimes |f(x) \oplus j\rangle,$$

then one can build a quantum algorithm that finds an x with f(x) = 1in time $O(\sqrt{2^n})$.

Our first approach is to apply a Hadamard transformation to $|0^n\rangle$ to obtain a superposition of all inputs and then to apply U_f on $H^{\otimes n} | 0^n \rangle \otimes$ $|0\rangle$. The resulting vector is

$$\psi := \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle \otimes |f(x)\rangle.$$

Can we measure $|\psi\rangle$ to find an input x with f(x)=1? For each x with f(x)=1, the amplitude of $|x1\rangle$ in $|\psi\rangle$ is $\frac{1}{\sqrt{2^n}}$. Hence, if for instance there is only one such x, then a measurement of ψ will very likely not find this x. The idea of the algorithm is to apply a transformation on $|\psi\rangle$ that makes the amplitudes of the basis vectors $|x1\rangle$ much larger while making those of $|x0\rangle$ smaller. After this transformation, with high probability a measurement of the last results in a basis vector of the form $|x1\rangle$, i.e. f(x)=1. If the measurement fails and we obtain a vector $|x0\rangle$, we just repeat the process.

It turns out that this idea can be made to work using a modified approach, where we apply U_f not to $H^{\otimes n} |0^n\rangle \otimes |0\rangle$, but to $H^{\otimes n} |0^n\rangle \otimes H |1\rangle$. As in the Deutsch-Jozsa algorithm, the resulting vector is $|\psi_f\rangle \otimes H |1\rangle$, where

$$|\psi_f
angle = \sum_{x \in \{0,1\}^n} \frac{(-1)^{f(x)}|x
angle}{\sqrt{2^n}} \, .$$

Let V_f the transformation on the first n qubits defined by U_f , ∞

$$V_f|x\rangle = (-1)^{f(x)}|x\rangle$$

For $|\psi\rangle = \sum_{x} a_{x} |x\rangle$, we have

$$V_f|\psi\rangle = \sum_{x: f(x)=0} a_x|x\rangle - \sum_{x: f(x)=1} a_x|x\rangle.$$

For $|\psi\rangle = \sum_x a_x |x\rangle$, let $A := 2^{-n} \sum_x a_x$ the average amplitude. Consider the transformation D that maps $|\psi\rangle$ to the vector $\sum_x (2A - a_x)|x\rangle$. The corresponding matrix is

$$D = \begin{pmatrix} \frac{2}{2^{n}} & \frac{2}{2^{n}} & \cdots & \frac{2}{2^{n}} \\ \frac{2}{2^{n}} & \frac{2}{2^{n}} - 1 & & \frac{2}{2^{n}} \\ \vdots & & \ddots & \vdots \\ \frac{2}{2^{n}} & \frac{2}{2^{n}} & \cdots & \frac{2}{2^{n}} - 1 \end{pmatrix}.$$

To see this, consider a basis vector $|y\rangle = \sum_{x} \delta_{xy} |x\rangle$ (where $\delta_{xy} = 1$ if

x = y and $\delta_{xy} = 0$ otherwise). The average amplitude of $|y\rangle$ is $A = \frac{1}{2^n}$. Hence, $D|y\rangle = (\frac{2}{2^n} - 1)|y\rangle + \sum_{x \neq y} \frac{2}{2^n}|x\rangle$.

Lemma 3.1. $D = H^{\otimes n} \cdot R_n \cdot H^{\otimes n}$ with

$$R_n = \begin{pmatrix} 1 & & & \\ & -1 & & \\ & & \ddots & \\ & & & -1 \end{pmatrix}.$$

Note that R_n can be implemented using O(n) simple gates.

Proof. Consider the matrix

$$R' = R_n + I_n = \begin{pmatrix} 2 & 0 & \\ & \ddots & \\ & & \ddots & \\ 0 & & \end{pmatrix}.$$

We claim that

$$\mathbf{H}^{\otimes n} \cdot \mathbf{R}'_n \cdot \mathbf{H}^{\otimes n} = \frac{2}{2^n} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix},$$

i.e. $H^{\otimes n} \cdot R'_n \cdot H^{\otimes n} |x\rangle = \frac{2}{2^n} \sum_{y} |y\rangle$ for all $x \in \{0,1\}^n$:

$$\begin{split} |x\rangle & \stackrel{\operatorname{H}^{\otimes n}}{\longmapsto} \frac{1}{\sqrt{2^n}} \sum_z (-1)^{x \cdot z} |z\rangle \\ & \stackrel{R'_n}{\longmapsto} \frac{1}{\sqrt{2^n}} \sum_z (-1)^{x \cdot z} R'_n |z\rangle = \frac{2}{\sqrt{2^n}} |0\rangle \\ & \stackrel{\operatorname{H}^{\otimes n}}{\longmapsto} \frac{2}{2^n} \sum_y |y\rangle. \end{split}$$

Finally,

$$H^{\otimes n} \cdot R_n \cdot H^{\otimes n} = H^{\otimes n} (R'_n - I_n) H^{\otimes n}$$

$$= H^{\otimes n} \cdot R'_n H^{\otimes n} - H^{\otimes n} \cdot I_n \cdot H^{\otimes n}$$

$$= H^{\otimes n} \cdot R'_n H^{\otimes n} - I_n$$

$$= D.$$

3.2 Grover's search algorithm 3 Quantum Algorithms

For a given function $f \colon \{0,1\}^n \to \{0,1\}$, Grover's search algorithm iterates the *Grover operator* $G := D \cdot V_f$ *sufficiently often* on input $H^{\otimes n} \mid 0 \rangle$ in order to magnify the amplitudes of the basis vectors $\mid x \rangle$ with f(x) = 1. But what do we mean by *sufficiently often*?

Consider the sets $T = \{x: f(x) = 1\}$ and $F = \{x: f(x) = 0\}$. After r iterations of G, the resulting vector will be of the form $|\psi_r\rangle = t_r \sum_{x \in T} |x\rangle + f_r \sum_{x \in F} |x\rangle$ with average amplitude $A_r = \frac{1}{2^n} (t_r |T| + f_r(2^n - |T|))$. Now,

$$\begin{aligned} |\psi_{r+1}\rangle &= G|\psi_r\rangle \\ &= DV_f \Big(t_r \sum_{x \in T} |x\rangle + f_r \sum_{x \in F} |x\rangle \Big) \\ &= D\Big(-t_r \sum_{x \in T} |x\rangle + f_r \sum_{x \in F} |x\rangle \Big) \\ &= (2A_r + t_r) \sum_{x \in T} |x\rangle + (2A_r - f_r) \sum_{x \in F} |x\rangle. \end{aligned}$$

Hence,

$$t_{r+1} = 2A + t_r = \left(1 - \frac{2|T|}{2^n}\right)t_r + \left(2 - \frac{2|T|}{2^n}\right)f_r;$$

$$f_{r+1} = 2A - f_r = -\frac{2|T|}{2^n}t_r + \left(1 - \frac{2|T|}{2^n}\right)f_r.$$

This means that the coefficients t_r and f_r satisfy the following recursion:

$$\begin{pmatrix} t_{r+1} \\ f_{r+1} \end{pmatrix} = \begin{pmatrix} 1 - \delta & 2 - \delta \\ -\delta & 1 - \delta \end{pmatrix} \begin{pmatrix} t_r \\ f_r \end{pmatrix}, \tag{3.1}$$

where $\delta = \frac{2|T|}{2^n}$.

To compute the effect of the iterated application of G on $H^{\otimes n} | 0^n \rangle$, we have to solve (3.1) under the initial condition $t_0 = f_0 = \frac{1}{\sqrt{2^n}}$. Since G is unitary, we have $\|G|\psi\rangle\| = \|\psi\|$, i.e. $|T|t_r^2 + (2^n - |T|)f_r^2 = 1$ for all $r \in \mathbb{N}$. Hence, there exist ϑ_r such that $t_r = \frac{1}{\sqrt{|T|}}\sin\vartheta_r$ and $f_r = \frac{1}{\sqrt{2^n - |T|}}\cos\vartheta_r$.

The Grover operator *G* can be interpreted geometrically as a rota-

tion in the 2-dimensional space that is generated by the vectors

$$|\varphi^{+}\rangle = \frac{1}{\sqrt{|T|}} \sum_{x \in T} |x\rangle,$$

 $|\varphi^{-}\rangle = \frac{1}{\sqrt{2^{n} - |T|}} \sum_{x \in F} |x\rangle.$

We have

$$\begin{aligned} |\psi_0\rangle &= \frac{1}{\sqrt{2^n}} \sum_x |x\rangle \\ &= \sqrt{\frac{|T|}{2^n}} |\varphi^+\rangle + \sqrt{\frac{2^n - |T|}{2^n}} |\varphi^-\rangle \\ &= \sin \theta_0 |\varphi^+\rangle + \cos \theta_0 |\varphi^-\rangle. \end{aligned}$$

Now, the Grover operator applied first performs a reflection across $|\varphi^-\rangle$ followed by a reflection across $|\psi_0\rangle$. The resulting operation is a rotation by $2\vartheta_0$ towards $|\varphi^+\rangle$. Hence, $\vartheta_r = (2r+1)\vartheta_0$ for all $r \in \mathbb{N}$.

In order for the final measurement to yield $|x\rangle$ with $x \in T$, we need that $\vartheta_r \approx \frac{\pi}{2}$ (so that $|\psi_r\rangle$ is close to $|\varphi^+\rangle$). Solving the equation $(2r+1)\vartheta_0 = \frac{\pi}{2}$, we obtain $r = \frac{\pi}{4\vartheta_0} - \frac{1}{2}$. Hence, for $\vartheta_0 \approx \sin \vartheta_0 = \sqrt{\frac{|T|}{2^n}}$, we can expect that $r = \lfloor \frac{\pi}{4} \sqrt{\frac{2^n}{|T|}} \rfloor$ iterations suffice to find a solution with high probability. More precisely, we have the following theorem.

Theorem 3.2. Let $f: \{0,1\}^n \to \{0,1\}$ and $m:=|\{x: f(x)=1\}|$ such that $0 < m \le \frac{3}{4} \cdot 2^n$, and let $\theta_0 < \frac{\pi}{3}$ such that $\sin \theta_0 = \frac{m}{2^n}$. After $\lfloor \frac{\pi}{4\theta_0} \rfloor$ iterations of G on $|\psi_0\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$, a measurement of the resulting vector yields a basis vector $|x\rangle$ such that f(x) = 1 with probability $\ge \frac{1}{4}$.

Proof. For $|\psi_r\rangle = \sin(2r+1)\vartheta_0 |\varphi^+\rangle + \cos(2r+1)\vartheta_0 |\varphi^-\rangle$, we denote by $p(r) := \sin^2(2r+1)\vartheta_0$ the probability of a projection onto $|\varphi^+\rangle$. (This is precisely the probability with which a measurement of $|\psi_r\rangle$ results in a basis vector $|x\rangle$ such that f(x) = 1.) Let $\delta \in (0, \frac{1}{2}]$ such that $\left\lfloor \frac{\pi}{4\vartheta_0} \right\rfloor = \frac{\pi}{4\vartheta_0} - \frac{1}{2} + \delta$. Since $|2\delta\vartheta_0| \le |\vartheta_0| \le \frac{\pi}{3}$, we have

$$p\left(\left\lfloor \frac{\pi}{4\vartheta_0} \right\rfloor\right) = \sin^2\left(\left\lfloor \frac{\pi}{4\vartheta_0} \right\rfloor\right)\vartheta_0$$

3.2 Grover's search algorithm 3 Quantum Algorithms

$$=\sin^2\left(\frac{\pi}{2}+2\delta\vartheta_0\right)$$

$$\geq \sin^2\left(\frac{\pi}{2}-\frac{\pi}{3}\right)=\frac{1}{4}.$$
 Q.E.D.

Finally, we can state Grover's search algorithm. Given a QGA for the operator V_f defined by $V_f|x\rangle = (-1)^{f(x)}|x\rangle$ and for *known* $m := |\{x \colon f(x) = 1\}|$, the algorithm determines an input x such that f(x) = 1 by the following procedure:

$$\begin{split} &\text{if } m \geq \frac{3}{4} \cdot 2^n \text{ then } \\ &|\psi\rangle := \mathrm{H}^{\otimes n} \, |0^n\rangle \\ &\text{else} \\ &r := \left\lfloor \frac{\pi}{4\vartheta_0} \right\rfloor \text{ for } 0 \leq \vartheta_0 \leq \frac{\pi}{3} \text{ with } \sin^2 \vartheta_0 = \frac{m}{2^n} \\ &|\psi\rangle := G^r \, \mathrm{H}^{\otimes n} \, |0^n\rangle \\ &\text{end if } \\ &\text{measure } |\psi\rangle \text{ to obtain a basis vector } |x\rangle \\ &\text{output } x \end{split}$$

If $m \geq \frac{3}{4} \cdot 2^n$, the algorithm finds x such that f(x) = 1 with probability $\geq \frac{3}{4}$ since $|\psi\rangle$ is a uniform superposition of all basis vectors. Otherwise, Theorem 3.2 applies, and the algorithm finds x such that f(x) = 1 with probability $\geq \frac{1}{4}$.

For m=1 and for large n, we have $\lfloor \frac{\pi}{4\theta_0} \rfloor \approx \frac{\pi}{4}\sqrt{2^n}$ (since $\sin^2 \theta_0 \approx \theta_0^2 = \frac{1}{2^n}$)). Hence, in this case, $O(\sqrt{2^n})$ calls to V_f suffice to find an input x such that f(x)=1 with probability $\geq \frac{1}{4}$, whereas classical randomised algorithms need to evaluate f at $O(2^n)$ points to find such an x with the same probability of success.

Another interesting special case is when one fourth of the inputs are positive instances, i.e. if $m = \frac{1}{4} \cdot 2^n$. Recall that after r iterations of G the resulting state is

$$|\psi_r\rangle = \sin(2r+1)\vartheta_0 |\varphi^+\rangle + \cos(2r+1)\vartheta_0 |\varphi^-\rangle.$$

For $m=\frac{1}{4}\cdot 2^n$, we have $\sin^2\vartheta_0=\frac{1}{4}$, and therefore $\vartheta_0=\frac{\pi}{6}$. After *one* iteration of G, the resulting state is $|\psi_1\rangle=\sin\frac{\pi}{2}|\varphi^+\rangle+\cos\frac{\pi}{2}|\varphi^-\rangle=|\varphi^+\rangle$ and a measurement will *surely* result in a basis vector x such that f(x)=1.

In typical applications, the number *m* of positive instances is *not* known. How can we modify the algorithm such that it also finds a solution with good probability in this case?

Lemma 3.3. For all $\alpha \in \mathbb{R}$ and all $m \in \mathbb{N}$:

$$\sum_{r=0}^{m-1}\cos(2r+1)\alpha = \frac{\sin 2m\alpha}{2\sin\alpha}.$$

In particular, $\sin 2\alpha = 2 \sin \alpha \cos \alpha$, and $\cos 2\alpha = 1 - 2 \sin^2 \alpha$.

We can now state Grover's search algorithm for unknown m:

$$\begin{aligned} &\textbf{choose} \ x \in \{0,1\}^n \ \text{uniformly at random} \\ &\textbf{if} \ f(x) = 1 \ \textbf{then} \\ &\textbf{output} \ x \\ &\textbf{else} \\ &\textbf{choose} \ r \in \{0,1,\dots,\lfloor \sqrt{2^n}\rfloor \} \ \text{uniformly at random} \\ &|\psi\rangle := G^r \operatorname{H}^{\otimes n} |0^n\rangle \\ &\text{measure} \ |\psi\rangle \ \text{to obtain a basis vector} \ |x\rangle \\ &\textbf{output} \ x \\ &\textbf{end if} \end{aligned}$$

Clearly, if $m \geq \frac{3}{4} \cdot 2^n$, then the algorithm returns x such that f(x) = 1 with probability $\geq \frac{3}{4}$. Hence, assume now that $m < \frac{3}{4} \cdot 2^n$, and set $t := \lfloor \sqrt{2^n} \rfloor + 1$. What is the probability that the algorithm outputs a *good* x? We have already seen that the probability of finding a good x after r iterations of G is $\sin^2(2r+1)\theta_0$. Now, since r is chosen uniformly at random from $\{0,1,\ldots,t-1\}$, the probability that the algorithm outputs a good x is

$$\frac{1}{t} \sum_{r=0}^{t-1} \sin^2(2r+1)\vartheta_0$$

$$= \frac{1}{2t} \sum_{r=0}^{t-1} \left(1 - \cos(2r+1)2\vartheta_0\right) \quad \text{(since } \sin^2\alpha = (1 - \cos2\alpha)/2\text{)}$$

$$= \frac{1}{2} - \frac{1}{2t} \sum_{r=0}^{t-1} \cos(2r+1)2\vartheta_0$$

$$=\frac{1}{2}-\frac{\sin 4t\theta_0}{4t\sin 2\theta_0}$$
 (by Lemma 3.3).

For $0 < m \le \frac{3}{4} \cdot 2^n$ and $t = \lfloor \sqrt{2^n} \rfloor + 1$, we have

$$\begin{aligned} \sin 2\vartheta_0 &= 2\sin \vartheta_0 \cos \vartheta_0 \\ &= 2\sqrt{\frac{m}{2^n}} \cdot \sqrt{\frac{2^n - m}{2^n}} \\ &\geq 2\sqrt{\frac{m}{2^n}} \cdot \sqrt{\frac{1}{4}} = \sqrt{\frac{m}{2^n}} \\ &\geq \sqrt{\frac{1}{2^n}} \end{aligned}$$

and therefore

$$t \geq \frac{1}{\sin 2\theta_0}.$$

Hence, the algorithm finds a good x with probability

$$\frac{1}{2} - \frac{\sin 4t\theta_0}{4t\sin 2\theta_0} \ge \frac{1}{2} - \frac{\sin 4t\theta_0}{4} \ge \frac{1}{2} - \frac{1}{4} = \frac{1}{4}.$$

To sum up, we have the following theorem.

Theorem 3.4 (Grover). Given a function $f: \{0,1\}^n \to \{0,1\}$, $f \not\equiv 0$, and a QGA for $V_f: H_{2^n} \to H_{2^n}: |x\rangle \mapsto (-1)^{f(x)}|x\rangle$, there exists a quantum algorithm that finds an x such that f(x)=1 with probability $\geq \frac{1}{4}$ by evaluating V_f at most $O(\sqrt{2^n})$ times.

3.3 Fourier transformation

In the following, let (G, +) be an abelian group, and let $\mathbb{C}^* = (\mathbb{C} \setminus \{0\}, \cdot)$. A *character* of (G, +) is a homomorphism $\chi : (G, +) \to \mathbb{C}^*$. For two characters χ_1, χ_2 , their product $\chi_1 \cdot \chi_2$, defined by

$$\chi_1 \cdot \chi_2 \colon (G,+) \to \mathbb{C}^* \colon g \mapsto \chi_1(g) \cdot \chi_2(g)$$

is also a character. In fact the set of characters of (G, +) together with this operations forms a new group, called the *dual group* and denoted by (\hat{G}, \cdot) .

Lemma 3.5. Let (G, +) be a finite abelian group with n elements. Then $\chi(g)^n = 1$ for all $g \in G$, i.e. $\chi(g)$ is an nth root of unity. Hence, $\chi(g) = e^{2i\pi k/n}$ for some $k \in \{0, 1, \dots, n-1\}$.

Proof. For $m \in \mathbb{N}$ and $g \in G$, let

$$m \cdot g := \underbrace{g + \cdots + g}_{m \text{ times}}.$$

The set $\{0, g, 2 \cdot g, \dots\}$ forms a subgroup of (G, +). Let

$$k = \min\{m > 0 \colon m \cdot g = 0\}$$

be the order of this subgroup. Since the order of a subgroup divides the order of the group, we have $n \cdot g = \frac{n}{k} \cdot k \cdot g = \frac{n}{k} \cdot 0 = 0$. Hence, $\chi(g)^n = \chi(n \cdot g) = \chi(0) = 1$.

Example 3.6. Consider the cyclic group $(\mathbb{Z}_n, +)$, where $\mathbb{Z}_n = \{0, 1, ..., n-1\}$, with addition modulo n. For each $y \in \mathbb{Z}_n$, define

$$\chi_{u} \colon \mathbb{Z}_{n} \to \mathbb{C}^{*} \colon x \mapsto \mathrm{e}^{2\pi \mathrm{i} \frac{xy}{n}}.$$

We claim that χ_y is a character of $(\mathbb{Z}_n, +)$, i.e. a group homomorphism from $(\mathbb{Z}_n, +)$ to (\mathbb{C}^*, \cdot) . Let $x, x' \in \mathbb{Z}_n$. We have:

$$\chi_y(x + x') = e^{2\pi i \frac{x+x'}{n}}$$

$$= e^{2\pi i \frac{xy}{n}} e^{2\pi i \frac{x'y}{n}}$$

$$= \chi_y(x) \cdot \chi_y(x')$$

Now consider $y \neq y' \in \mathbb{Z}_n$. We have

$$\chi_y(1) = e^{2\pi i \frac{y}{n}} \neq e^{2\pi i \frac{y'}{n}} = \chi_{y'}(1).$$

Hence, also $\chi_y \neq \chi_{y'}$. On the other hand, let χ be a character of

 $(\mathbb{Z}_n, +)$. By Lemma 3.5, $\chi(1) = \mathrm{e}^{2\mathrm{i}\pi y/n}$ for some $y \in \mathbb{Z}_n$. But then $\chi = \chi_y$. Finally, note that $\chi_y \cdot \chi_{y'} = \chi_{y+y'}$. Hence, the mapping $\mathbb{Z}_n \to \hat{\mathbb{Z}}_n \colon y \mapsto \chi_y$ is an isomorphism between $(\mathbb{Z}_n, +)$ and the dual group $(\hat{\mathbb{Z}}_n, \cdot)$, i.e. $(\mathbb{Z}_n, +) \cong (\hat{\mathbb{Z}}_n, \cdot)$.

More generally, we have the following theorem.

Theorem 3.7. Let (G, +) be a finite abelian group. Then $(G, +) \cong (\hat{G}, \cdot)$.

Proof. Every abelian group is (isomorphic to) a *direct sum* (or a direct product if the group operation is understood as multiplication) of cyclic groups:

$$(G,+)=(\mathbb{Z}_{n_1},+)\oplus\cdots\oplus(\mathbb{Z}_{n_k},+).$$

We already know that $(\mathbb{Z}_n, +) \cong (\hat{\mathbb{Z}}_n, \cdot)$ and therefore also

$$(G,+)\cong (\hat{\mathbb{Z}}_{n_1},\cdot)\times\cdots\times(\hat{\mathbb{Z}}_{n_k},\cdot).$$

To establish that $(G, +) \cong (\hat{G}, \cdot)$, it remains to show that there exists an isomorphism

$$\varphi: (\hat{\mathbb{Z}}_{n_1}, \cdot) \times \cdots \times (\hat{\mathbb{Z}}_{n_k}, \cdot) \to (\hat{G}, \cdot).$$

For each $g \in G$ there exists a unique decomposition into its components: $g = g_1 + \dots + g_k$ with $g_i \in \mathbb{Z}_{n_i}$. For $\chi_1 \in \hat{\mathbb{Z}}_{n_1}, \dots, \chi_k \in \hat{\mathbb{Z}}_{n_k}$, we define $(\varphi(\chi_1, \dots, \chi_k))(g) := \chi_1(g_1) \cdots \chi_k(g_k)$. Clearly, φ is a homomorphism. It remains to show that φ is a bijection.

Let us first prove that φ is injective: Let $(\chi_1, \ldots, \chi_k) \neq (\chi'_1, \ldots, \chi'_k)$, $\chi = \varphi(\chi_1, \ldots, \chi_k)$, and $\chi' = \varphi(\chi'_1, \ldots, \chi'_k)$. There exists i with $\chi_i \neq \chi'_i$; in particular, there exists $g_i \in \mathbb{Z}_{n_i}$ with $\chi_i(g_i) \neq \chi'_i(g_i)$. We have $\chi(g_i) = \chi_i(g_i) \neq \chi'_i(g_i) = \chi'(g_i)$ and therefore also $\chi \neq \chi'$.

It remains to prove that φ is surjective: Let $\chi \in \hat{G}$. For each i = 1, ..., k, χ induces a character $\chi_i \in \hat{\mathbb{Z}}_{n_i}$ by setting $\chi_i(g_i) = \chi(g_i)$ for all $g_i \in \mathbb{Z}_{n_i}$. For all $g \in G$, we have:

$$\chi(g) = \chi(g_1 + \dots + g_k)$$
$$= \chi(g_1) \cdots \chi(g_k)$$

$$= \chi_1(g_1) \cdots \chi_k(g_k)$$

= $(\varphi(\chi_1, \dots, \chi_k))(g)$

Hence, $\chi = \varphi(\chi_1, \dots, \chi_k)$. Q.E.D.

Example 3.8. Consider the *m*-fold direct sum of $(\mathbb{Z}_2, +)$,

$$(\mathbb{Z}_2^m,+) = \underbrace{(\mathbb{Z}_2,+) \oplus \cdots \oplus (\mathbb{Z}_2,+)}_{m \text{ times}}.$$

We already know that $(\mathbb{Z}_2, +)$ has two characters, namely $\chi_0 \colon x \mapsto 1$ and $\chi_1 \colon x \mapsto e^{\pi i x} = (-1)^x$. The characters of $(\mathbb{Z}_2^m, +)$ are of the form

$$\chi_y : x = x_1 \dots x_m \mapsto (-1)^{x \cdot y} = (-1)^{x_1 y_1 + \dots + x_m y_m},$$

where $y = y_1 \dots y_m \in \{0, 1\}^m$.

The set of all functions $f: G \to \mathbb{C}$ from a finite abelian group (G, +) to \mathbb{C} naturally forms a vector space V over \mathbb{C} . If $G = \{g_1, \ldots, g_n\}$, then this vector space is isomorphic to \mathbb{C}^n , where the isomorphisms maps a function f to the tuple $(f(g_1), \ldots, f(g_n))$, and the functions e_i defined by

$$e_i(g_j) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise,} \end{cases}$$

form a basis of V. The vector space V can be equipped with an inner product by setting

$$\langle f | f' \rangle := \sum_{i=1}^n f(g_i)^* \cdot f'(g_i).$$

As usual, this inner product gives rise to a norm $\|\cdot\|$ on V, namely $\|f\| = \sqrt{\langle f \mid f \rangle}$. Since $\langle e_i \mid e_i \rangle = 1$ and $\langle e_i \mid e_j \rangle = 0$ for $i \neq j$, the set $\{e_1, \ldots, e_n\}$ is, in fact, an orthonormal basis of V. The characters of (G, +) give rise to a different orthonormal basis of V. For $\hat{G} = \{\chi_1, \ldots, \chi_k\}$, set $B_i := \frac{1}{\sqrt{n}}\chi_i$ for all $i = 1, \ldots, n$.

Theorem 3.9. Let (G,+) be a finite abelian group with characters χ_1, \ldots, χ_n , and let $B_i := 1/\sqrt{n} \cdot \chi_i$ for all $i = 1, \ldots, n$. The vectors B_1, \ldots, B_n form an orthonormal basis of $V = \mathbb{C}^G$, called the *Fourier basis*.

Proof. Since $|\{B_1, \dots, B_n\}| = |\{e_1, \dots, e_n\}|$, it suffices to show that

$$\langle \chi_i | \chi_j \rangle = \begin{cases} n & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$

For each $g \in G$ and for all $\chi \in \hat{G}$, by Lemma 3.5, we have $\chi(g)^n = 1$ and therefore $|\chi(g)| = 1$. Hence, $\chi(g)^* \cdot \chi(g) = |\chi(g)|^2 = 1$ and $\chi(g)^* = \chi(g)^{-1}$. We have:

$$\langle \chi_i \mid \chi_j \rangle = \sum_{k=1}^n \chi_i(g_k)^* \cdot \chi_j(g_k)$$
$$= \sum_{k=1}^n \chi_i(g_k)^{-1} \cdot \chi_j(g_k)$$
$$= \sum_{k=1}^n (\chi_i^{-1} \cdot \chi_j)(g_k).$$

For i=j, we have $\chi^{-1} \cdot \chi_{j}=1$ (the trivial character) and therefore $\langle \chi_{i} | \chi_{j} \rangle = n$. For $i \neq j$, consider the character $\chi := \chi_{i}^{-1} \cdot \chi_{j}$. Since $\chi_{i} \neq \chi_{j}$, we have $\chi \neq 1$, i.e. there exists $g \in G$ with $\chi(g) \neq 1$. Consider the mapping $h_{g}: G \to G: g' \mapsto g' + g$. Since G is finite, this mapping is not only injective, but also surjective. Hence,

$$\langle \chi_i \mid \chi_j \rangle = \sum_{k=1}^n \chi(g_k)$$

$$= \sum_{k=1}^n \chi(g + g_k)$$

$$= \chi(g) \sum_{k=1}^n \chi(g_k)$$

$$= \chi(g) \cdot \langle \chi_i \mid \chi_j \rangle.$$

Since $\chi(g) \neq 1$, we must have $\langle \chi_i | \chi_i \rangle = 0$.

Q.E.D.

Let $G = \{g_1, \ldots, g_n\}$, $\hat{G} = \{\chi_1, \ldots, \chi_n\}$, and consider the matrix $X = (\chi_j(g_i))_{1 \leq i,j \leq n}$ and its conjugate transpose $X^* = ((\chi_i(g_j)^*))_{1 \leq i,j \leq n}$. We claim that $X^* \cdot X = n \cdot I$. To see this, consider the entry at position i,j:

$$(X^* \cdot X)_{ij} = \sum_{k=1}^{n} X_{ik}^* \cdot X_{kj}$$

$$= \sum_{k=1}^{n} \chi_i(g_k)^* \cdot \chi_j(g_k)$$

$$= \langle \chi_i | \chi_j \rangle$$

$$= \begin{cases} n & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$

It follows that also $X \cdot X^* = n \cdot I$, i.e.

$$\sum_{k=1}^{n} \chi_k(g_i) \cdot \chi_k(g_j)^* = \begin{cases} n & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$
 (3.2)

Corollary 3.10. Let (G, +) be a finite abelian group, $g \in G$ and $\chi \in \hat{G}$.

(a)
$$\sum_{k=1}^{n} \chi(g_k) = \begin{cases} n & \text{if } \chi = 1, \\ 0 & \text{otherwise.} \end{cases}$$

(b) $\sum_{k=1}^{n} \chi_k(g) = \begin{cases} n & \text{if } g = 0, \\ 0 & \text{otherwise.} \end{cases}$

Proof. To prove (a), note that

$$\sum_{k=1}^{n} \chi(g_k) = \langle 1 | \chi \rangle = \begin{cases} n & \text{if } \chi = 1, \\ 0 & \text{otherwise.} \end{cases}$$

To prove (b), it suffices to apply (3.2) with $g_i = g$ and $g_j = 0$:

$$\sum_{k=1}^{n} \chi_k(g) = \sum_{k=1}^{n} \chi_k(g) \cdot \chi_k(0)^* = \begin{cases} n & \text{if } g = 0, \\ 0 & \text{otherwise.} \end{cases}$$
 Q.E.D.

Example 3.11. For $G = \mathbb{Z}_n$, the characters are the mappings χ_y , $y \in \mathbb{Z}_n$, with $\chi_y(x) = e^{2\pi i x y/n}$. Hence,

$$\sum_{y \in \mathbb{Z}_n} e^{2\pi i \frac{xy}{n}} = \begin{cases} n & \text{if } x = 0, \\ 0 & \text{otherwise.} \end{cases}$$

For $G = \mathbb{Z}_2^m$, the characters are the mappings χ_y , $y \in \mathbb{Z}_2^m$, with $\chi_y(x) = (-1)^{x \cdot y}$. Hence,

$$\sum_{y \in \mathbb{Z}_n} (-1)^{x \cdot y} = \begin{cases} 2^m & \text{if } x = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Finally, we can define the Fourier transformation. By Theorem 3.9, the vectors $B_i = 1/\sqrt{n} \cdot \chi_i$ form a basis of \mathbb{C}^G . The discrete Fourier transform of f is the function \hat{f} that maps the elements of G to the coefficients in the unique representation of f according to this basis.

Definition 3.12. Let (G, +) be a finite abelian group with elements g_1, \ldots, g_n , and let B_1, \ldots, B_n be the Fourier basis of \mathbb{C}^G . Given a function $f = \hat{f}_1 \cdot B_1 + \cdots + \hat{f}_n \cdot B_n \in \mathbb{C}^G$, its *discrete Fourier transform (DFT)* is the function $\hat{f}: G \to \mathbb{C}: g_i \to \hat{f}_i$.

How can we compute the DFT of a given function f? It turns out that \hat{f} can be computed via the conjugate transpose of the matrix $X = (\chi_i(g_i))_{1 \le i,i \le n}$ as defined above.

Theorem 3.13. Let (G,+) be a finite abelian group with elements g_1, \ldots, g_n and characters χ_1, \ldots, χ_n , and let $X = (\chi_j(g_i))_{1 \le i,j \le n}$. With respect to the standard basis, for any function $f: G \to \mathbb{C}$, we have $\hat{f} = 1/\sqrt{n} \cdot X^* \cdot f$, i.e.

$$\begin{pmatrix} \hat{f}(g_1) \\ \hat{f}(g_2) \\ \vdots \\ \hat{f}(g_n) \end{pmatrix} = \frac{1}{\sqrt{n}} \cdot \begin{pmatrix} \chi_1(g_1)^* & \cdots & \chi_1(g_n)^* \\ \chi_2(g_1)^* & \cdots & \chi_2(g_n)^* \\ \vdots & & \vdots \\ \chi_n(g_1)^* & \cdots & \chi_n(g_n)^* \end{pmatrix} \begin{pmatrix} f(g_1) \\ f(g_2) \\ \vdots \\ f(g_n) \end{pmatrix}.$$

Proof. Since $\{B_1, \ldots, B_n\}$ is an orthonormal basis, we have

$$\langle B_i | f \rangle = \sum_{j=1}^n \langle B_i | \hat{f}_j \cdot B_j \rangle = \sum_{j=1}^n \hat{f}_j \cdot \langle B_i | B_j \rangle = \hat{f}_i$$

and therefore

$$\hat{f}(g_i) = \hat{f}_i = \langle B_i | f \rangle = \langle 1/\sqrt{n} \cdot \chi_i | f \rangle = \frac{1}{\sqrt{n}} \sum_{k=1}^n \chi_i(g_k)^* \cdot f(g_k).$$
Q.E.D.

Corollary 3.14 (Parseval's theorem). Let $f: G \to \mathbb{C}$ and \hat{f} the DFT of f. Then $\|\hat{f}\| = \|f\|$.

Proof. Since $X^* \cdot X = n \cdot I$, the matrix $1/\sqrt{n} \cdot X^*$ is unitary. Hence, $\|\hat{f}\| = \|1/\sqrt{n} \cdot X^* \cdot f\| = \|f\|$.

The mapping $f \mapsto 1/\sqrt{n} \cdot X \cdot f$ (wrt. the standard basis) is called the *inverse Fourier transform*.

Example 3.15. For $G = \mathbb{Z}_n$ the characters are χ_y , $y \in \mathbb{Z}_n$, with $\chi_y(x) = e^{2\pi i x y/n}$. Hence, the Fourier transform of $f : \mathbb{Z}_n \to \mathbb{C}$ is

$$\hat{f} \colon \mathbb{Z}_n \to \mathbb{C} \colon x \mapsto \frac{1}{\sqrt{n}} \sum_{y \in \mathbb{Z}_n} e^{-2\pi i x y / n} f(y),$$

and its inverse Fourier transform is the function

$$\tilde{f} \colon \mathbb{Z}_n \to \mathbb{C} \colon x \mapsto \frac{1}{\sqrt{n}} \sum_{y \in \mathbb{Z}_n} e^{2\pi i x y/n} f(y).$$

For $G = \mathbb{Z}_2^m$ the characters are χ_y , $y \in \mathbb{Z}_2^m$, with $\chi_y(x) = (-1)^{x \cdot y}$. The Fourier transform of $f \colon \mathbb{Z}_2^m \to \mathbb{C}$ is

$$\hat{f} \colon \mathbb{Z}_2^m \to \mathbb{C} \colon x \mapsto \frac{1}{\sqrt{2^m}} \sum_{y \in \mathbb{Z}_2^m} (-1)^{x \cdot y} f(y).$$

The same function is also the inverse Fourier transform of f.

3.4 Quantum Fourier transformation

Let (G, +) be a finite abelian group with elements g_1, \ldots, g_n and characters χ_1, \ldots, χ_k , and consider the n-dimensional Hilbert space with basis $\{|g_1\rangle, \ldots, |g_1\rangle\}$. Every state $|\psi\rangle$ of H_G can be described by the function $f: G \to \mathbb{C}$ with $|\psi\rangle = \sum_{g \in G} f(g) \cdot |g\rangle$, i.e. $f(g) = \langle g | \psi \rangle$.

Definition 3.16. Let (G, +) be a finite abelian group; $G = \{g_1, \dots, g_n\}$ and $\hat{G} = \{\chi_1, \dots, \chi_k\}$. The mapping

QFT:
$$H_G \to H_G$$
: $\sum_{i=1}^n f(g_i) \cdot |g_i\rangle \mapsto \sum_{i=1}^n \hat{f}(g_i) \cdot |g_i\rangle$

is called the quantum Fourier transformation (QFT). In particular,

QFT
$$|g\rangle = \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \chi_k(g)^* \cdot |g_k\rangle$$

for all $g \in G$.

Lemma 3.17. QFT is a unitary transformation.

Proof. Follows from Corollary 3.14.

Q.E.D.

How can we implement QFT by a QGA with elementary gates? To do this, we will follow a bottom-up process. Let $G = \{g_1, \ldots, g_m\}$ and $G' = \{g_1, \ldots, g_n'\}$ with dual groups $\hat{G} = \{\chi_1, \ldots, \chi_m\}$ and $\hat{G}' = \{\chi'_1, \ldots, \chi'_n\}$. From G and G' we can build a new group $G \oplus G' = \{g + g' \colon g \in G, g' \in G'\}$, the direct sum of G and G'. (Formally, the domain of $G \oplus G'$ is the cartesian product of G and G', and addition is applied componentwise). The corresponding Hilbert space is $H_{G \oplus G'} = H_G \otimes H_{G'}$ with basis vectors $|g\rangle \otimes |g'\rangle$, $g \in G$, $g' \in G'$.

By Theorem 3.7, the dual group of $G \oplus G'$ is isomorphic to $\hat{G} \times \hat{G}'$. Hence, the characters of $G \oplus G'$ are χ_{ij} , $1 \le i \le m$, $1 \le j \le n$, with $\chi_{ij}(g+g') = \chi_i(g) \cdot \chi_j'(g')$ for all $g \in G$ and all $g' \in G'$.

How does QFT behave on $H_{G \oplus G'}$? For a basis vector $|g_i\rangle|g_i'\rangle =$

 $|g_i\rangle\otimes|g_i'\rangle$, we have

$$QFT |g_{i}\rangle|g_{j}'\rangle = \frac{1}{\sqrt{mn}} \sum_{k=1}^{m} \sum_{l=1}^{n} \chi_{ij} (g_{k} + g_{l}')^{*} \cdot |g_{k}\rangle|g_{l}'\rangle$$

$$= \frac{1}{\sqrt{mn}} \sum_{k=1}^{m} \sum_{l=1}^{n} (\chi_{i}(g_{k})^{*}|g_{k}\rangle \otimes \chi_{j}(g_{l}')^{*}|g_{l}'\rangle)$$

$$= \left(\frac{1}{\sqrt{m}} \sum_{k=1}^{m} \chi_{i}(g_{k})^{*}|g_{k}\rangle\right) \otimes \left(\frac{1}{\sqrt{n}} \sum_{l=1}^{n} \chi_{j}(g_{l}')^{*}|g_{l}\rangle\right)$$

$$= QFT |g_{i}\rangle \otimes QFT |g_{j}'\rangle$$

Example 3.18. Consider the group $G = \mathbb{Z}_2^m$ (the *m*-fold direct product of \mathbb{Z}_2). Then QFT on the Hilbert space H_G is equivalent to $H^{\otimes m}$ since for all $x = x_1 \dots x_m \in \{0,1\}^m$ we have

$$H^{\otimes m} |x\rangle = \bigotimes_{i=1}^{m} \frac{1}{\sqrt{2}} (|0\rangle + (-1)^{x_i} |1\rangle)$$

$$= \frac{1}{\sqrt{2^m}} \sum_{y_1 \dots y_m \in \{0,1\}^m} (-1)^{x_1 y_1 + \dots + x_m y_m} \cdot |y\rangle$$

$$= \frac{1}{\sqrt{2^m}} \sum_{y \in \{0,1\}^m} (-1)^{x \cdot y} \cdot |y\rangle$$

$$= QFT |x\rangle.$$

We are interested in QFT for the group $G=\mathbb{Z}_n$, $n\in\mathbb{N}$. For this group, we have QFT $|x\rangle=\sum_{y=0}^{n-1}\mathrm{e}^{-2\pi\mathrm{i}xy/n}\cdot|y\rangle$ for all $x\in\{0,\ldots,n-1\}$. If $n=p\cdot q$ with $\gcd(p,q)=1$, then $\mathbb{Z}_n\cong\mathbb{Z}_p\times\mathbb{Z}_q$, and QFT on \mathbb{Z}_n can be composed from QFT on \mathbb{Z}_p and QFT on \mathbb{Z}_q . However, in most applications no factorisation of n is known, or $n=2^m$ and no two factors are relatively prime.

For $G = \mathbb{Z}_{2^m}$, instead of QFT, let us look at the inverse QFT. For $x = \sum_{i=0}^{m-1} x_i \cdot 2^i \in \mathbb{Z}_{2^m}$, we identify the basis vector $|x\rangle$ in H_G with the corresponding basis vector in H_{2^m} , i.e. $|x\rangle = |x_{m-1} \dots x_0\rangle$. On H_{2^m} , the inverse QFT on G corresponds to the transformation

$$\mathrm{IQFT}_m \colon H_{2^m} \to H_{2^m} \colon |x\rangle \mapsto \frac{1}{\sqrt{2^m}} \sum_{y \in \mathbb{Z}_{2^m}} \mathrm{e}^{2\pi \mathrm{i} \cdot xy/2^m} \cdot |y\rangle.$$

Lemma 3.19. IQFT_m $|x\rangle$ is decomposable for all $x \in \mathbb{Z}_{2^m}$ and all m > 0:

$$\sum_{y \in \mathbb{Z}_{2^m}} e^{2\pi i \cdot xy/2^m} \cdot |y\rangle = \bigotimes_{l=0}^{m-1} \left(|0\rangle + e^{\pi i \cdot x/2^l} \cdot |1\rangle \right).$$

Proof. The proof is by induction on m. For m=1, the statement is trivial. Hence, let m>1 and assume that IQFT_{m-1} is decomposable. For all $x\in\mathbb{Z}_{2^m}$, we have:

$$\begin{split} &\sum_{y \in \mathbb{Z}_{2^m}} \mathrm{e}^{2\pi \mathrm{i} \cdot xy/2^m} \cdot |y\rangle \\ &= \sum_{z \in \mathbb{Z}_{2^{m-1}}} \left(\mathrm{e}^{2\pi \mathrm{i} \cdot x \cdot 2z/2^m} \cdot |z0\rangle + \mathrm{e}^{2\pi \mathrm{i} \cdot x(2z+1)/2^m} \cdot |z1\rangle \right) \\ &= \sum_{z \in \mathbb{Z}_{2^{m-1}}} \left(\mathrm{e}^{2\pi \mathrm{i} \cdot xz/2^{m-1}} |z0\rangle + \mathrm{e}^{2\pi \mathrm{i} \cdot xz/2^{m-1}} \, \mathrm{e}^{2\pi \mathrm{i} \cdot x/2^m} |z1\rangle \right) \\ &= \left(\sum_{z \in \mathbb{Z}_{2^{m-1}}} \mathrm{e}^{2\pi \mathrm{i} \cdot xz/2^{m-1}} \cdot |z\rangle \right) \otimes \left(|0\rangle + \mathrm{e}^{2\pi \mathrm{i} \cdot x/2^m} \cdot |1\rangle \right) \\ &= \bigotimes_{l=0}^{m-2} \left(|0\rangle + \mathrm{e}^{\pi \mathrm{i} \cdot x/2^l} |1\rangle \right) \otimes \left(|0\rangle + \mathrm{e}^{\pi \mathrm{i} \cdot x/2^{m-1}} \cdot |1\rangle \right) \\ &= \bigotimes_{l=0}^{m-1} \left(|0\rangle + \mathrm{e}^{\pi \mathrm{i} \cdot [x]/2^l} \cdot |1\rangle \right). \end{split}$$
 Q.E.D.

Let $x = \sum_{i=0}^{2^m} x_i \cdot 2^i \in \mathbb{Z}_{2^m}$ and consider the operation of IQFT_m on the *l*th qubit:

$$|x_l\rangle\mapsto rac{1}{\sqrt{2}}ig(|0
angle+\mathrm{e}^{\pi\mathrm{i}\cdot x/2^l}\cdot|1
angleig).$$

We have

$$e^{\pi \mathbf{i} \cdot x/2^{l}} = \prod_{k=0}^{m-1} e^{\pi \mathbf{i} \cdot x_{k}/2^{l-k}} = \prod_{k=0}^{l} e^{\pi \mathbf{i} \cdot x_{k}/2^{l-k}} = (-1)^{x_{l}} \prod_{\substack{k < l \\ x_{k} = 1}} e^{\pi \mathbf{i}/2^{l-k}}.$$

Hence, IQFT_m operates on the lth qubit like a Hadamard transformation, followed by a phase shift that depends on the qubits $|x_k\rangle$ for k < l. Formally, for $j \in \mathbb{N}$ define

$$R_j = \begin{pmatrix} 1 & 0 \\ 0 & e^{\pi i/2^j} \end{pmatrix}.$$

In particular, $R_1 = S$ and $R_2 = T$. Then

$$IQFT_{m} |x\rangle = \bigotimes_{l=0}^{m-1} \left(\prod_{\substack{k < l \\ x_{k} = 1}} R_{l-k} \right) H |x_{l}\rangle$$

for all $x \in \{0,1\}^m$. It follows that we can implement IQFT_m using $O(m^2)$ Hadamard and controlled R_i gates.

Theorem 3.20. For all m > 0, IQFT_m can be implemented using $O(m^2)$ Hadamard and controlled R_i gates, j = 1, ..., m - 1.

QFT and Periodical functions. Let $f: \mathbb{Z}_n \to \mathbb{C}$ be a function with period $p \in \mathbb{Z}_n$, i.e. f(m+p) = f(m) for all $m \in \mathbb{Z}_n$. For all $x \in \mathbb{Z}_n$, we have

$$\hat{f}(x) = \frac{1}{\sqrt{n}} \sum_{y \in \mathbb{Z}_n} e^{-2\pi i x y/n} f(y)$$

$$= \frac{1}{\sqrt{n}} \sum_{y \in \mathbb{Z}_n} e^{-2\pi i x y/n} f(y+p)$$

$$= e^{2\pi i x p/n} \cdot \frac{1}{\sqrt{n}} \sum_{y \in \mathbb{Z}_n} e^{-2\pi i x (y+p)/n} f(y+p)$$

$$= e^{2\pi i x p/n} \cdot \frac{1}{\sqrt{n}} \sum_{y \in \mathbb{Z}_n} e^{-2\pi i x y/n} f(y)$$

$$= e^{2\pi i x p/n} \cdot \hat{f}(x)$$

Hence, if $\hat{f}(x) \neq 0$, then $e^{2\pi i x p/n} = 1$ and therefore $n \mid xp$.

We conclude that the Fourier transform of a function with period p can only take non-zero values on arguments x of the form $x = k \cdot n/p$.

3.5 Shor's factorisation algorithm

We can finally turn to Shor's algorithm for factoring a composite number n, i.e. the task to find given n numbers p, q < n such that $n = p \cdot q$. The general idea in almost all good factorisation algorithms is to find numbers b, c < n such that

$$b^2 \equiv c^2 \pmod{n},\tag{3.3}$$

$$b \not\equiv \pm c \pmod{n}. \tag{3.4}$$

We then have $(b+c)(b-c) \equiv 0 \pmod n$, but $b+c \not\equiv 0 \pmod n$ and $b-c \not\equiv 0 \pmod n$. Hence, b+c contains a factor of n, which can be extracted by computing $\gcd(b+c,n)$ in polynomial time, e.g. using Euklid's algorithm.

Shor's algorithm computes

$$r := \operatorname{ord}_n(a) = \min\{k > 0 \colon a^k = 1 \pmod{n}\}$$

for a randomly chosen a < n with gcd(a, n) = 1. If we are lucky, then r is even and $a^{r/2} \not\equiv -1 \pmod{n}$. In this case, $b = a^{r/2}$ and c = 1 satisfy (3.3) and (3.4).

What is the probability that we are lucky? We can assume without loss of generality that n is neither even nor a prime power because it is easy to decide whether $n = 2^l \cdot m$ or $n = a^k$ and to compute suitable numbers l, m or a, k if so.

Lemma 3.21. Let $n \in \mathbb{N}$ be neither even nor a prime power, and let $\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n \colon \gcd(a,n) = 1\}$. Then

$$\Pr_{a \in \mathbb{Z}_n^*}[\operatorname{ord}_n(a) \text{ is even and } a^{\operatorname{ord}_n(a)/2} \not\equiv -1 \pmod n)] \geq \frac{9}{16}.$$

To prove this lemma, we need to make a small digression into number theory.

3.5.1 Number theory in a nutshell

For $n \in \mathbb{N}$, let \mathbb{Z}_n^* the set of all $a \in \mathbb{Z}_n$ with gcd(a, n) = 1; we denote by $\varphi(n)$ the cardinality of \mathbb{Z}_n^* . When equipped with multiplication mod n, the set \mathbb{Z}_n^* forms an abelian group.

For prime numbers p, we have $\mathbb{Z}_p^* = \{1, 2, ..., p-1\}$ and $\varphi(p) = p-1$. In this case, the group (\mathbb{Z}_p^*, \cdot) is is isomorphic to the cyclic group $(\mathbb{Z}_{p-1}, +)$. More generally, if $n = p^k$ is a prime power, then

$$\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n : a \neq 0, p, 2p, \dots, (p^{k-1} - 1)p \}$$

and
$$\varphi(n) = p^k - p^{k-1} = p^{k-1}(p-1)$$
.

Theorem 3.22. Let $n = p^k$ for a prime p > 2 and $k \ge 1$. Then the group $(\mathbb{Z}_{n'}^*)$ is cyclic.

Proof. We prove that there exists an element $b \in \mathbb{Z}_n^*$ with $\operatorname{ord}_n(b) = \varphi(n) = p^{k-1}(p-1)$. We prove this by establishing the following three facts:

- (1) there exists $b \in \mathbb{Z}_n^*$ with $\operatorname{ord}_n(b) = p 1$;
- (2) $\operatorname{ord}_n(1+p) = p^{k-1};$
- (3) if (G, \cdot) is an abelian group and $g, h \in G$ with $\operatorname{ord}_G(g)$ and $\operatorname{ord}_G(h)$ being relatively prime, then $\operatorname{ord}_G(g \cdot h) = \operatorname{ord}_G(g) \cdot \operatorname{ord}_G(h)$.

It follows that $\operatorname{ord}_n(b \cdot (1+p)) = \varphi(n)$.

We start by proving (1). Consider the natural homomorphism

$$f: \mathbb{Z}_n^* \to \mathbb{Z}_p^*: a \mapsto a \pmod{p}$$
.

Since \mathbb{Z}_p^* is cyclic and f is surjective, there exists $a \in \mathbb{Z}_n^*$ with $\operatorname{ord}_p(f(a)) = p-1$. Let $r := \operatorname{ord}_n(a)$. Since $a^r \equiv 1 \pmod{p^k}$, we have $f(a)^r = q \pmod{p}$ and therefore r = l(p-1) for some $l \in \mathbb{N}$. Set $b := a^l$. We have $b^{p-1} = a^r \equiv 1 \mod n$. On the other hand, whenever $b^s \equiv 1 \pmod{n}$, then $(p-1) \mid s$ because if $b^s \equiv 1 \pmod{n}$, then also $a^{l \cdot s} \equiv 1 \mod n$ and therefore $r = l(p-1) \mid l \cdot s$. Hence, $\operatorname{ord}_n(b) = p-1$.

To prove (2), we first prove that for all m > 0 we have $(1+p)^{p^m} = 1 + \lambda p^{m+1}$ for some $\lambda \in \mathbb{N}$ such that $p \nmid \lambda$. We prove this by induction

over m. For m = 1, we have

$$(1+p)^p = \sum_{i=0}^p \binom{p}{i} \cdot p^i$$

$$= 1+p^2 + \sum_{i=3}^p \binom{p}{i} \cdot p^i \qquad \text{(since } p > 2\text{)}$$

$$= 1+p^2 + p^3 \cdot \sum_{i=3}^p \binom{p}{i} \cdot p^{i-3}$$

$$= 1+p^2(1+l\cdot p),$$

which proves the statement since $(1 + l \cdot p) \nmid p$.

Now let m > 1 and assume that the statement holds for m - 1. We have:

$$(1+p)^{p^{m}} = (1+p)^{p^{m-1} \cdot p}$$

$$= (1+\lambda \cdot p^{m})^{p}$$

$$= \sum_{i=0}^{p} {p \choose i} \lambda^{i} p^{mi}$$

$$= 1+\lambda p^{m+1} + \sum_{i=2}^{p} {p \choose i} \lambda^{i} p^{mi}$$

$$= 1+\lambda p^{m+1} + p^{m+2} \cdot \sum_{i=2}^{p} {p \choose i} \lambda^{i} p^{m(i-1)-2}$$

$$= 1+p^{m+1}(\lambda+lp).$$

Since $\lambda \nmid p$, we also have $(\lambda + lp) \nmid p$, which proves the statement.

It follows that there exist $\lambda_1, \lambda_2 \in \mathbb{N}$ with $p \nmid \lambda_1$ and $p \nmid \lambda_2$ such that

$$(1+p)^{p^{k-1}} = 1 + \lambda_1 \cdot p^k \equiv 1 \pmod{n};$$

$$(1+p)^{p^{k-2}} = 1 + \lambda_2 \cdot p^{k-1} \not\equiv 1 \pmod{n}.$$

Hence, $\operatorname{ord}_n(1+p) \mid p^{k-1}$ but $\operatorname{ord}_n(1+p) \nmid p^{k-2}$. Thus, $\operatorname{ord}_n(1+p) = p^{k-1}$.

It remains to prove (3). Let $r = \operatorname{ord}_G(g)$ and $s = \operatorname{ord}_G(h)$ with $\gcd(r,s) = 1$. Clearly, $(gh)^{rs} = 1$ and therefore $\operatorname{ord}_G(gh) \mid rs$. On the other hand, assume that $(gh)^t = 1$. We have $1^r = (gh)^{ts} = g^{ts} \cdot h^{ts} = g^{ts} \cdot 1^t = g^{ts}$ and therefore $r \mid ts$. Since $\gcd(r,s) = 1$, this implies $r \mid t$, and an analogous argument shows that $s \mid t$. Hence, also $rs \mid t$, which proves that $\operatorname{ord}_G(gh) = rs$.

Remark 3.23. Theorem 3.22 does not hold for p = 2. For instance, we have $\mathbb{Z}_8^* = \{1,3,5,7\}$ with $3^2 \equiv 5^2 \equiv 7^2 \equiv 1 \pmod{n}$. Hence, the group (\mathbb{Z}_8^*, \cdot) is isomorphic to $(\mathbb{Z}_2 \times \mathbb{Z}_2, +)$, the *Klein four-group*.

Let n be an odd prime power, i.e. $n=p^e$ for some prime p>2. Since \mathbb{Z}_n^* is cyclic, there exists a generator g of this group, i.e. $\mathbb{Z}_n^*=\{g,g^2,\ldots,g^{\varphi(n)}\}$. Moreover, $\varphi(n)=\varphi(p^e)=p^{e-1}(p-1)=2^d\cdot u$ for $d\geq 1$ and an odd number u.

Lemma 3.24. Let $n = p^e$, p > 2, $\varphi(n) = 2^d \cdot u$ with $2 \nmid u$, and let g be a generator of \mathbb{Z}_n^* . Then $i \in \mathbb{N}$ is odd if and only if $2^d \mid \operatorname{ord}_n(g^i)$.

Proof. (\Rightarrow) Let $i \in \mathbb{N}$ be odd. We have $g^{i \cdot \operatorname{ord}_n(g^i)} \equiv 1 \pmod{n}$ and therefore $\varphi(n) \mid i \cdot \operatorname{ord}_n(g^i)$. Since $\varphi(n) = 2^d \cdot u$ and i is odd, this implies that $2^d \mid \operatorname{ord}_n(g^i)$.

(\Leftarrow) Let $i \in \mathbb{N}$ be even. We have $g^{i \cdot \varphi(n)/2} = g^{\varphi(n) \cdot i/2} \equiv 1 \pmod{n}$ and therefore $\operatorname{ord}_n(g^i) \mid \varphi(n)/2$. Since $2^d \nmid \varphi(n)/2$, this implies that $2^d \nmid \operatorname{ord}_n(g^i)$.

Corollary 3.25. Let $n = p^e$, p > 2, and $\varphi(n) = 2^d \cdot u$ with $2 \nmid u$. Then

$$\Pr_{a\in\mathbb{Z}_n^*}[2^d\mid \operatorname{ord}_n(a)]=\frac{1}{2}.$$

Finally, we can prove Lemma 3.21.

Proof (of Lemma 3.21). Let $n \in \mathbb{N}$ be neither even nor a prime power. Hence, $n = p_1^{e_1} \cdots p_r^{e_k}$, k > 1 for primes $p_i > 2$ such that $p_i \neq p_j$ for

 $i \neq j$. The *Chinese remainder theorem* tells us that the mapping

$$\mathbb{Z}_n^* \to \mathbb{Z}_{p_1^{e_1}}^* \times \cdots \times \mathbb{Z}_{p_k^{e_k}} : a \to (a \bmod p_1^{e_1}, \dots, a \bmod p_k^{e_k})$$

is an isomorphism. In particular, we have

$$\varphi(n) = \prod_{i=1}^k \varphi(p_i^{e_i}) = \prod_{i=1}^k p_i^{e_i-1}(p_i-1).$$

Moreover, for $a \in \mathbb{Z}_n^*$ we have $\operatorname{ord}_n(a) = \gcd(\operatorname{ord}_{p_1^{e_1}}(a), \ldots, \operatorname{ord}_{p_k^{e_k}}(a))$ because, by the Chinese remainder theorem, $a^r \equiv 1 \pmod n$ is equivalent to $a^r \equiv 1 \pmod {p_i^{e_i}}$ for all i, and the latter holds if and only if $\operatorname{ord}_{p_i^{e_i}}(a) \mid r$.

By the Chinese remainder theorem, a random choice of $a \in \mathbb{Z}_n^*$ corresponds to a random choice of a_1, \ldots, a_k with $a_i \in \mathbb{Z}_{p_i^{e_i}}$. For $a \in \mathbb{Z}_n^*$ let $r_i = \operatorname{ord}_{p_i^{e_i}}(a)$. Then $\operatorname{ord}_n(a) = \gcd(r_1, \ldots, r_k)$ is odd if and only if each r_i is odd. It follows from Corollary 3.25 that $\Pr_{a \in \mathbb{Z}_n^*}[r_i \text{ is odd}] \leq \frac{1}{2}$ and $\Pr_{a \in \mathbb{Z}_n^*}[\operatorname{ord}_n(a) \text{ is odd}] \leq \frac{1}{2^k}$.

Assume now that $r = \operatorname{ord}_n(a)$. If $a^{r/2} \equiv -1 \pmod n$, then $n \neq a^{r/2} + 1$. But then also $p_i^{e_i} \mid a^{r/2} + 1$ and therefore $a^{r/2} \equiv -1 \pmod {p_i^{e_i}}$ for all $i = 1, \ldots, k$. Since $a^{r_i} \equiv 1 \pmod {p_i^{e_i}}$ and $p_i > 2$, this implies that $r_i \nmid \frac{r}{2}$ for all i. For $r = 2^d \cdot u$ (where u is odd), this means that $2^d \mid r_i$ for all $i = 1, \ldots, k$. Hence,

$$\begin{split} &\Pr_{a \in \mathbb{Z}_n^*}[a^{\operatorname{ord}_n(a)/2} \equiv -1 \pmod n \mid \operatorname{ord}_n(a) \text{ is even}] \\ &\leq \Pr_{a \in \mathbb{Z}_n^*}[2^d \mid \operatorname{ord}_{p_i^{e_i}}(a) \text{ for all } i] \\ &= \frac{1}{2^k}, \end{split}$$

where the last equality follows from Corollary 3.25. Finally,

$$\begin{split} &\Pr_{a \in \mathbb{Z}_n^*}[2 \mid \operatorname{ord}_n(a) \text{ and } a^{\operatorname{ord}_n(a)/2} \not\equiv -1 \pmod{n}] \\ &= \Pr_{a \in \mathbb{Z}_n^*}[2 \mid \operatorname{ord}_n(a)] \cdot \Pr_{a \in \mathbb{Z}_n^*}[a^{\operatorname{ord}_n(a)/2} \not\equiv -1 \pmod{n} \mid 2 \mid \operatorname{ord}_n(a)] \\ &\geq (1 - \frac{1}{2^k}) \cdot (1 - \frac{1}{2^k}) \end{split}$$

$$\geq \frac{3}{4} \cdot \frac{3}{4} \geq \frac{9}{16}$$
 Q.E.D.

3.5.2 Factoring and QFT

To sum up, we can reduce factoring to the problem of computing, given a number $n \in \mathbb{N}$ that is neither odd nor a prime power, the order $\operatorname{ord}_n(a)$ of $a \in \mathbb{Z}_n^*$. The number $r = \operatorname{ord}_n(a)$ is the period of the function

$$f: \mathbb{Z} \to \mathbb{Z}_n : x \mapsto a^x \mod n$$

since $f(x+r) \equiv a^{x+r} \equiv a^x \cdot a^r \equiv a^x \pmod{n}$. We can use QFT to determine this period! However, QGAs only operate on the Hadamard space H_{2^m} . Hence, we choose a sufficiently large number $m \in \mathbb{N}$ such that the period of f occurs in \mathbb{Z}_{2^m} : in fact, we can always take the unique number m such that $n^2 \leq 2^m < 2n^2$.

We can now give an informal description of Shor's algorithm. First, after having randomly chosen a < n, the algorithm computes the quantum state

$$|\psi\rangle = \frac{1}{\sqrt{2^m}} \sum_{x \in \mathbb{Z}_{2^m}} |x\rangle |a^x \bmod n\rangle \in H_{2^{m+k}},$$

where $2^k \le n < 2^{k+1}$. Note that the function $x \mapsto a^x \mod n$ is computable in polynomial time (by a classical circuit) and thus also by a QGA since for $x = \sum_{i=0}^{m-1} x_i \cdot 2^i$ we have $a^x \equiv \prod_{i: x_i=1} a_i \pmod n$ where $a_0 = a$ and $a_{i+1} = a_i^2 \mod n$ for all i < m.

Since $x \mapsto a^x \mod n$ has period $r = \operatorname{ord}_n(a)$, we have

$$|\psi\rangle = \frac{1}{\sqrt{2^m}} \sum_{l=0}^{r-1} \sum_{q=0}^{s_l} |qr+l\rangle |a^l \bmod n\rangle,$$

where $s_l = \max\{s \in \mathbb{N} : sr + l < 2^m\}$.

The next step of the algorithm is to apply IQFT_m to the first m qubits of $|\psi\rangle$. The resulting state is

$$\begin{split} |\varphi\rangle &= \frac{1}{\sqrt{2^m}} \sum_{l=0}^{r-1} \sum_{q=0}^{s_l} \frac{1}{\sqrt{2^m}} \sum_{y \in \mathbb{Z}_{2^m}} \mathrm{e}^{2\pi \mathrm{i} \cdot y(qr+l)/2^m} |y\rangle |a^l \bmod n\rangle \\ &= \frac{1}{2^m} \sum_{l=0}^{r-1} \sum_{y=0}^{2^m-1} \mathrm{e}^{2\pi \mathrm{i} \cdot yl/2^m} \sum_{q=0}^{s_l} \mathrm{e}^{2\pi \mathrm{i} \cdot yr \cdot q/2^m} |y\rangle |a^l \bmod n\rangle \end{split}$$

Finally, the algorithm performs a measurement on the first m qubits of $|\varphi\rangle$, which yields $y \in \mathbb{Z}_{2^m}$. Then, with some luck, $y \approx k \cdot 2^m / r$ and $\gcd(k,r) = 1$. The number r can then be extracted using the method of *continued fractions* (see below).

Example 3.26. Let n = 15 and a = 7. In this case, it suffices to choose m = 4 (as opposed to m = 8). Hence,

$$\begin{split} |\psi\rangle &= \frac{1}{\sqrt{16}} \sum_{x=0}^{15} |x\rangle | 7^x \bmod 15 \rangle \\ &= \frac{1}{4} \big(|0\rangle |1\rangle + |1\rangle |7\rangle + |2\rangle |4\rangle + \dots + |15\rangle |13\rangle \big) \\ &= \frac{1}{4} \Big(\big(|0\rangle + |4\rangle + |8\rangle + |12\rangle \big) |1\rangle \\ &+ \big(|1\rangle + |5\rangle + |9\rangle + |13\rangle \big) |7\rangle \\ &+ \big(|2\rangle + |6\rangle + |1\rangle 0 + |1\rangle 4 \big) |4\rangle \\ &+ \big(|3\rangle + |7\rangle + |11\rangle + |15\rangle \big) |13\rangle \Big) \\ &= \sum_{j=0}^{4} \Big(\sum_{y=0}^{15} f_j(y) |y\rangle \Big) |7^j \bmod 15\rangle, \end{split}$$

where

$$f_j(y) = \begin{cases} \frac{1}{4} & \text{if } y \equiv j \pmod{4} \\ 0 & \text{otherwise.} \end{cases}$$

Each f_j has period 4. Hence, $\hat{f}_j(x) \neq 0$ only for $x \in \{0,4,8,12\}$. For k = 0,1,2,3, we have

$$\hat{f}_j(4k) = \frac{1}{4} \sum_{y=0}^{15} e^{2\pi i \cdot 4k \cdot y/16} \cdot f_j(y)$$

$$= \frac{1}{4} \sum_{l=0}^{3} e^{2\pi i \cdot 4k(4l+j)/16} \cdot \frac{1}{4}$$

$$= \frac{1}{16} \sum_{l=0}^{3} e^{2\pi i \cdot 4k(4l+j)/16}$$

$$= \frac{1}{16} \cdot e^{\pi i \cdot kj/2} \sum_{l=0}^{3} e^{2\pi i \cdot kl}$$

$$= \frac{1}{16} \cdot e^{\pi i \cdot kj/2} \sum_{l=0}^{3} 1$$

$$= \frac{1}{4} \cdot e^{\pi i \cdot kj}.$$

Hence,

$$\begin{split} |\varphi\rangle &= \frac{1}{4} \Big(\big(|0\rangle + |4\rangle + |8\rangle + |12\rangle \big) |1\rangle \\ &+ \big(|0\rangle + \mathrm{i}|4\rangle - |8\rangle - \mathrm{i}|12\rangle \big) |7\rangle \\ &+ \big(|0\rangle - |4\rangle + |8\rangle - |12\rangle \big) |4\rangle \\ &+ \big(|0\rangle - \mathrm{i}|4\rangle - |8\rangle + \mathrm{i}|12\rangle \big) |13\rangle \Big). \end{split}$$

With probability $\frac{1}{4}$ each, a measurement of the first m qubits of $|\varphi\rangle$ yields $|0\rangle$, $|4\rangle$, $|8\rangle$ or $|12\rangle$, with probability $\frac{1}{4}$ each. From $|0\rangle$ and $|8\rangle$, the period $4 = \operatorname{ord}_{15}(7)$ cannot be extracted. However, for y = 4, 12 we have y = 4k with $\gcd(k, 4) = 1$, and the period can be extracted.

The period r = 4 is even and $7^{r/2} = 7^2 - 4 \not\equiv -1 \pmod{15}$. Hence, 3 = 4 - 1 and 5 = 4 + 1 are identified as factors of 15.

The probability that a measurement of the first m qubits of $|\varphi\rangle$ returns $y \in \mathbb{Z}_{2^m}$ is

$$\Pr[y] = \frac{1}{2^{2m}} \sum_{l=0}^{r-1} \left| e^{2\pi i \cdot yl/2^m} \sum_{q=0}^{s_l} e^{2\pi i \cdot yrq/2^m} \right|^2$$
$$= \frac{1}{2^{2m}} \sum_{l=0}^{r-1} \left| \sum_{q=0}^{s_l} e^{2\pi i \cdot yrq/2^m} \right|^2.$$

If $r \mid 2^m$, i.e. for $r = 2^s$ with $s \le m$, we know that $\Pr[y] \ne 0$ only

3.5 Shor's factorisation algorithm 3 Quantum Algorithms

if $k = \frac{2^m}{r}$. Moreover, all these y occur with probability 1/r because $s_l = 2^{m-s} = 1$ for all l < r and

$$\Pr[y] = \frac{r}{2^{2m}} \Big| \sum_{q=0}^{2^{m-s}-1} e^{2\pi i \cdot yq/2^{m-s}} \Big|^2$$

$$= \frac{r}{2^{2m}} \Big| \sum_{q=0}^{2^{m-s}-1} \chi_q(y) \Big|^2$$

$$= \begin{cases} \frac{r}{2^{2m}} |2^{m-s}|^2 & \text{if } y \equiv 0 \pmod{2}^{m-s}, \\ 0 & \text{otherwise,} \end{cases}$$

$$= \begin{cases} \frac{r}{2^{2m}} \cdot \frac{2^{2m}}{r^2} = \frac{1}{r} & \text{if } y = k \cdot 2^m/r, \\ 0 & \text{otherwise.} \end{cases}$$

However, in general, we cannot assume that $r \mid 2^m$. For l < r, consider the summand $\sum_{q=0}^{s_l} |qr+l\rangle|a^l \mod n\rangle$ of $|\psi\rangle$. This summand can be written as $\sum_{u \in \mathbb{Z}_{2^m}} f_l(y)|y\rangle|a^l \mod n\rangle$, where

$$f_l(y) = \begin{cases} 1 & \text{if } y \equiv l \pmod{r} \\ 0 & \text{otherwise.} \end{cases}$$

Since $r \nmid 2^m$, the function $f_i \colon \mathbb{Z}_{2^m} \to \mathbb{C}$ is not exactly periodic. Hence, the Fourier transformation and subsequent measurement does not necessarily yield $y = k \cdot 2^m / r$. However, with high probability, it yields a $y \in \mathbb{Z}_{2^m}$ that is sufficiently close to such an element.

Lemma 3.27. Let $|\varphi\rangle$ be the quantum state obtained by Shor's algorithm on input $n \geq 100$ after applying IQFT_m. For all $k < r = \operatorname{ord}_n(a)$, a measurement of the first m qubits of $|\varphi\rangle$ yields the unique $y \in \mathbb{Z}_{2^m}$ such that $|y - k \cdot 2^m/r| \leq 1/2$ with probability $\geq 2/5r$.

Proof. By an elementary, but long calculation. Q.E.D.

It follows from Lemma 3.27 that a measurement of the first m qubits of $|\varphi\rangle$ yields $y \in \mathbb{Z}_{2^m}$ such that $|y-k\cdot 2^m/r| \le 1/2$ for some $k \in \{0,\ldots,r-1\}$ with probability $\ge 2/5$. The probability that $\gcd(k,r)=1$ for a randomly chosen $k \in \{0,\ldots,r-1\}$ is $\varphi(r)/r$.

Lemma 3.28. For all $r \geq 19$,

$$\frac{\varphi(r)}{r} \ge \frac{1}{4\log\log r}.$$

Corollary 3.29. Let $|\varphi\rangle$ be the quantum state obtained by Shor's algorithm on input $n \geq 100$ after applying IQFT_m. A measurement of the first m qubits of $|\varphi\rangle$ yields an element $y \in \mathbb{Z}_{2^m}$ such that $|y - k \cdot 2^m/r| \leq 1/2$ for some k < r with $\gcd(k, r) = 1$ with probability $\geq 1/(10 \log \log n)$.

For the obtained *y* with $|y - k \cdot 2^m / r| \le 1/2$, it holds that

$$\left|\frac{y}{2^m} - \frac{k}{r}\right| \le \frac{1}{2 \cdot 2^m} \le \frac{1}{2n^2} < \frac{1}{2r^2}.$$

(Recall that *m* was chosen in a way such that $n^2 \leq 2^m$.)

It remains to show that we can extract r from y and 2^m efficiently. For this task, we will use the method of continued fractions, and we will prove that 1. we can compute all *convergents* of the continued fraction representation for a rational number x efficiently, and 2. if $x \in \mathbb{Q}$ and p and q are relatively prime such that $|x - p/q| \le 1/2q^2$, then p/q is a convergent of the continued fraction representation for x.

3.5.3 Continued fractions

Every number $\alpha \in \mathbb{R}$ can be represented as a continued fraction

$$[a_0, a_1, \dots] := a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}},$$

where $a_0 \in \mathbb{Z}$ and $a_n \in \mathbb{N} \setminus \{0\}$ for all n > 0. If α is irrational, then α has unique continued fraction representation, which is infinite. Rational numbers, on the other hand, have a two different finite continued fraction representations.

3.5 Shor's factorisation algorithm 3 Quantum Algorithms

Example 3.30. Consider the rational number $x = \frac{31}{13}$. We have

$$x = 2 + \frac{5}{13} = 2 + \frac{1}{\frac{13}{5}}$$

$$= 2 + \frac{1}{2 + \frac{3}{5}} = 2 + \frac{1}{2 + \frac{1}{\frac{5}{3}}}$$

$$= 2 + \frac{1}{2 + \frac{1}{1 + \frac{2}{3}}} = 2 + \frac{1}{2 + \frac{1}{1 + \frac{1}{\frac{3}{2}}}}$$

$$= 2 + \frac{1}{2 + \frac{1}{1 + \frac{1}{2}}} = 2 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1}}}$$

$$= 2 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1}}} = 2 + \frac{1}{2 + \frac{1}{1 + \frac{1}{1}}}$$

$$= [2, 2, 1, 1, 2] = [2, 2, 1, 1, 1, 1]$$

We will show that a continued fraction representation of a rational number p/q with $p,q < 2^n$ can be computed using Euklid's algorithm in O(n) basic steps. Note that we can form the expression

$$[a_0, a_1, \dots, a_n] := a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{\vdots}}}$$

for arbitrary numbers $a_0, a_1, ..., a_n \in \mathbb{R}_{>0}$. For $\alpha = [a_0, ..., a_n]$ and $j \leq n$, we call $[a_0, ..., a_i]$ the *jth convergent* of α .

Theorem 3.31. For $\alpha = [a_0, \dots, a_n] \in \mathbb{R}$, we have $[a_0, \dots, a_j] = p_j/q_j$ for all $j \le n$, where

$$p_0 = a_0, q_0 = 1, (3.5)$$

$$p_1 = 1 + a_0 \cdot a_1, \qquad q_1 = a_1, \tag{3.6}$$

$$p_{j+2} = a_{j+2} \cdot p_{j+1} + p_j,$$
 $q_{j+2} = a_{j+2} \cdot q_{j+1} + q_j.$ (3.7)

Proof. We have

$$[a_0] = \frac{a_0}{1} = \frac{p_0}{q_0}$$

and

$$[a_0, a_1] = a_0 + \frac{1}{a_1} = \frac{a_0 \cdot a_1 + 1}{a_1} = \frac{p_1}{q_2},$$

which proves (3.5) and (3.6). We prove (3.7) by induction over j: We have

$$[a_0, a_1, a_2] = a_0 + \frac{1}{a_1 + \frac{1}{a_2}}$$

$$= \frac{a_0 \cdot a_1 \cdot a_2 + a_0 + a_2}{a_1 \cdot a_2 + 1}$$

$$= \frac{a_2(1 + a_0 \cdot a_1) + a_0}{a_2 \cdot a_1 + 1}$$

$$= \frac{a_2 \cdot p_1 + p_0}{a_2 \cdot q_1 + q_0} = \frac{p_2}{q_2},$$

which establishes the base case. Now let $0 \le j \le n-3$ and assume that p_{j+2} and q_{j+2} satisfy (3.7). Then

$$\begin{aligned} [a_0,\dots,a_{j+3}] &= [a_0,\dots,a_{j+1},a_{j+2}+1/a_{j+3}] \\ &= \frac{(a_{j+2} = \frac{1}{a_{j+3}})p_{j+1} = p_j}{(a_{j+2} + \frac{1}{a_{j+3}})q_{j+1} + q_j} \\ &= \frac{a_{j+3}(a_{j+2} \cdot p_{j+1} + p_j) + p_{j+1}}{a_{j+3}(a_{j+2} \cdot q_{j+1} + q_j) + q_{j+1}} \\ &= \frac{a_{j+3} \cdot p_{j+2} + p_{j+1}}{a_{j+3} \cdot q_{j+2} + q_{j+1}} = \frac{p_{j+3}}{q_{j+3}}, \end{aligned}$$

which proves (3.7) for j replaced by j + 1.

Q.E.D.

Corollary 3.32. For $\alpha = [a_0, ..., a_n] \in \mathbb{R}$ such that $[a_0, ..., a_j] = p_j/q_j$ for $j \le n$, we have $p_{j-1} \cdot q_j - p_j \cdot q_{j-1} = (-1)^j$ for all $j \ge 1$.

It follows from Corollary 3.32 that $\gcd(p_j,q_j)=1$ if $a_j\in\mathbb{N}\setminus\{0\}$ for all j. Hence, Euklid's algorithm can be used to obtain p_{j+1} and q_{j+1} . Moreover, by the definition of p_j,q_j , we have $p_0< p_1<\cdots< p_n$ and $q_0< q_1<\cdots< q_n$. More precisely,

$$p_{j+2} = a_{j+2} \cdot p_{j+1} + p_j \ge 2p_j$$

and analogously $q_{i+2} \ge 2q_i$. Hence, $p_n, q_n \ge 2^{\lfloor n/2 \rfloor}$.

This proves that any rational number p/q with $p,q < 2^n$ has a continued fraction representation $[a_0, \ldots, a_m]$ with $m \le 2n$.

Theorem 3.33. Let $p \in \mathbb{Z}$, $q \in \mathbb{N} \setminus \{0\}$ and $x \in \mathbb{Q}$ such that gcd(p,q) = 1 and $|p/q - x| \le 1/2q^2$. Then p/q is a convergent of the continued fraction representation for x.

Proof. Consider the continued fraction representation $[a_0,\ldots,a_n]$ of p/q with convergents $p_1/q_1,\ldots,p_n/q_n=p/q$. Since $[a_0,\ldots,a_n]=[a_0,\ldots,a_{n-1},a_n-1,1]$, we can assume without loss of generality that n is even. Let $\delta \in \mathbb{R}$ be defined by the equation

$$x = \frac{p_n}{q_n} + \frac{\delta}{2 \, q_n^2}.$$

Since $|p/q - x| \le 1/2q^2$ we have $|\delta| < 1$. Without loss of generality, $\delta > 0$. Set

$$\lambda := \frac{2}{\delta} \cdot (p_{n-1} \cdot q_n - p_n \cdot q_{n-1}) - \frac{q_{n-1}}{q_n}.$$

We have

$$\lambda p_n + p_{n-1} = \frac{2 \cdot p_n \cdot q_n \cdot (p_{n-1} \cdot q_n - p_n \cdot q_{n-1})}{\delta \cdot q_n} - \frac{\delta \cdot q_{n-1} \cdot p_n + \delta \cdot q_n \cdot p_{n-1}}{\delta \cdot q_n} = \frac{(2 \cdot p_n \cdot q_n + \delta)(p_{n-1} \cdot q_n - p_n \cdot q_{n-1})}{\delta \cdot q_n}$$

and

$$\lambda \cdot q_n + q_{n-1} = \frac{2 \cdot q_n^2 (p_{n-1} \cdot q_n - p_n \cdot q_{n-1})}{\delta \cdot q_n} - q_{n-1} + q_{n-1}$$
$$= \frac{2 \cdot q_n^2 (p_{n-1} \cdot q_n - p_n \cdot q_{n-1})}{\delta \cdot q_n}.$$

Hence.

$$\frac{\lambda p_n + p_{n-1}}{\lambda q_n + q_{n-1}} = \frac{2 \cdot p_n \cdot q_n + \delta}{2 \, q_n^2} = \frac{p_n}{q_n} + \frac{\delta}{2 \, q_n^2} = x.$$

By Theorem 3.31, this implies that $x = [a_0, ..., a_n, \lambda]$. Since n is even, $p_{n-1} \cdot q_n - p_n \cdot q_{n-1} = 1$. Hence,

$$\lambda = \frac{2}{\delta} - \frac{q_{n-1}}{q_n} > 2 - 1 = 1.$$

Since λ is a rational number > 1, λ has a finite continued fraction representation $\lambda = [b_0, \ldots, b_m]$ with $b_0 \ge 1$. Hence $x = [a_0, \ldots, a_n, b_0, \ldots, b_m]$ is a continued fraction representation of x with convergent p/q. Q.E.D.

3.5.4 Complexity

Shor's algorithm is summarised as Algorithm 3.1. To evaluate the time complexity and success probability of Shor's algorithm, let $k = \lfloor \log n \rfloor + 1$ the length of the binary representation of n. Hence, $m \le 2k$.

Steps 1–2 of Shor's algorithm can be performed in time $O(k^3)$ and produce either a factor of n or confirm that n is neither even nor a prime power. Step 3 can also be performed in time $O(k^3)$ and produces either a factor of n or a randomly chosen element $a \in \mathbb{Z}_n^*$. As we have shown, Step 4 can be implemented by a QGA with $O(k^3)$ gates on 1 or 2 qubits. Step 5 also takes time $O(k^3)$ and succeeds with probability $O(1/\log k)$ (see Corollary 3.29). Finally, Step 6 takes time $O(k^3)$ as well and succeeds with probability $O(1/\log k)$ (see Lemma 3.21).

Theorem 3.34. Shor's algorithm computes, given a composite number $n \in \mathbb{N}$, a non-trivial factor of n with probability $\geq 9/(160 \log \log n)$.

Algorithm 3.1. Shor's factorisation algorithm

```
input n \in \mathbb{N} composite
1. if n is even then output 2 end.
2. if n = a^k for some a \in \mathbb{N}, k \ge 2 then output a end.
3. randomly choose a \in \{1, 2, ..., n - 1\}
   d := \gcd(a, n)
   if d > 1 then output d end.
4. compute m \in \mathbb{N} such that n^2 \leq 2^m < 2n^2
   |\varphi\rangle := \frac{1}{2^m} \sum_{l=0}^{r-1} \sum_{y=0}^{2^m-1} e^{2\pi i \cdot yl/2^m} \sum_{q=0}^{s_l} e^{2\pi i \cdot yrq/2^m} |y\rangle |a^l \mod n\rangle
   measure first m qubits of |\varphi\rangle to obtain y \in \mathbb{Z}_{2^m}
5. compute convergents p_i/q_i of y/2^m
   i := \min\{j \colon a^{q_j} \equiv 1 \pmod{n}\} \cup \{\infty\}
   if i = \infty then output? end else r := q_i
6. if a^r is odd or a^{r/2} \equiv -1 \pmod{n} then
      output?
   else
      d := \gcd(n, a^{r/2} - 1); output d
```

The algorithm can be implemented using $O(\log n^3)$ classical operations and $O(\log n^3)$ elementary quantum gates.

By repeating the algorithm $\log n$ times, we are able to find a factor with very high probability.