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2 Universal Quantum Gates

Consider the n-ary controlled operation c”-U defined by

ulj) ifiy,... in=1,

c'-Uliy...ipf) = |i1...in) ® S .
lj)  otherwise.

How can we implement a complicated operation such as c”-U using
simple gates such as Tf and c-U? The idea is to introduce a certain
number of control qubits, which are initially set to 0. Then, we can
implement c”-U as follows (the right part of the array resets the work
qubits to 0):

=
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In fact, we can build up the Toffoli gate Tf from the two-qubit gates
c-V, c-V~1 and c-M_,, where

1+i 1-—i
V- ﬁMﬂ:;<+1 1)1

1—1 1+i1i
as follows:
. Jan Jany
’i‘ N N
S V] v V]

To see this, note that the gate on the right maps |ijk) to |ij) ®
|f(i,j,k)), where

|k) if |ij) = ]00),
- VI = 6 if i) = [01
Fairy =4 " -
vVl = k) i) =
VVIky = k@ 1) if [ij) = |11
= |ij ®k).
Lemma 2.1. Tf is computable by a QGA over {H, c-M-,S, T, Tfl} (see
Figure 2.1).

Proof. By calculation. Q.E.D.

The general question here is which gates are sufficient for building
arbitrary unitary transformations. We will show that a QGA can be
approximated arbitrarily well by a QGA that consists of Hadamard, cNoT
and T gates only. More precisely, we will show that

(1) every unitary transformation U can be written as a product U =
Uy ... Uy of unitary operators U; that operate nontrivially only on
a two-dimensional subspace of Hy» (generated by two vectors of
the standard basis).
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Figure 2.1. An implementation of the Toffoli gate over {H, c-M-, S, T,Tfl}.
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2) every unitary transformation can be composed from cNoT and
y y p
quantum gates that operate on one qubit only;

(3) 1-qubit quantum gates can be approximated arbitrarily well using

Hand T.

To prove (1), consider a unitary transformation U : Hy,, — Hy
described by a unitary (m x m)-matrix.

Lemma 2.2. U is a product of unitary matrices of the form

1

1

Proof. Consider, for instance, m = 3 and

a d g
U=1|b e h
c f ]
If b = 0, set U; = L. Otherwise, set
at b
) )
w={t -5 |

1

where 6§ = /|a|? + |b|2. The matrix U is unitary, and Uy - U is of the
form

a d g
u-u=10 ¢ W
o f
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Ifc =0,set Uy = (a 1 ) Otherwise, set
1

*
at 0 ¢

1
0

Up=—F—+——10 1
2 ‘a/‘2+|cl|2 , 0 ,
C

Vi

The matrix UpU; U is unitary and of the form

1 d// g//
U, Ulu =|o o n
C/ f// ]'//

Since UpU; U is unitary, we have d” = ¢’ = 0. Finally, set

1
Uy = ol f// *

h//* 1%

J

We have Uzl U U =1, so U = UjUsU3, and each U is of the desired
form.

In general, we are able to find matrixes Uy, ..., Uy of the desired
form such that Uy ... U1U =1, wherek < (m—1)+(m—-2)+---+1 =
w. Q.E.D.
Corollary 2.3. A unitary transformation on n qubits is equivalent to
a product of at most 2"~1(2"~! — 1) unitary matrices that operate
nontrivially only on a 2-dimensional subspace of Hy: (generated by two
vectors of the standard basis).

Remark 2.4. The exponential blowup incurred by this translation is not
avoidable.

We can now turn towards proving (2).

Lemma 2.5. Let U : Hy — Hy be a unitary transformation that
operates nontrivially only on the subspace of Hy: generated by |x) =

|x1...x,) and |y) = |y1...Yn). Then U is a product of cNnoT and
1-qubit gates.
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Proof (Sketch). Let V be the nontrivial, unitary (2 x 2)-submatrix of U.
V can be viewed as a 1-qubit gate. Recall that, for each n, the opera-
tion c”-V can be implemented using Tf (which can be built from cnoT
and single qubit gates) and c-V. The gate c-V, on the other hand, can
be implemented using cNOT and single qubit operations (see Nielsen &
Chuang, Quantum Computation and Quantum Information, Section 4.3).
Fix a sequence |z1), ..., |zn) of basis vectors such that |z1) = |x),
|zn) = |y), and |z;) differs from |z; 1) on precisely one qubit. The idea
is to implement U as a product U = P; - - - Py, _1(c*-V)P,,_1 - - - P;. The
matrix P; maps |z;) to |z;11) and vice versa, and c*-V is the operation
of V on the qubit that distinguishes |z,,_1) and |z,), controlled by all
other qubits. Note that Py,_q---P; maps |x) to |y), and Py --- P4
maps |y) back to |x). As we have seen, c*-V and each P; can be
implemented using cNoT and 1-qubit gates. Q.E.D.

Finally, we can discuss (3), the reduction of arbitrary 1-qubit gates
to H and T. Note that there exist uncountably many unitary transfor-
mations U : Hy» — Hp», but from a finite (or even countably infinite)
set of gates, we can only compose countably many QGAs. Hence, there
is no way of representing every 1-qubit gate exactly using a fixed finite
set of gates. However, an approximation is possible! For two unitary
transformations U and V, we define

E(U, V)= max [[(U=V)[$)].
[g)I=1
Theorem 2.6 (Solvay-Kitaev). For every QGA U consisting of m cNOT
or 1-qubit gates and for every ¢ > 0, there exists a QGA V of size
O(m - log* M), c = 2, consisting of cNnot, H and T gates only such that
E(U, V) <e.
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