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1 Deterministic Turing Machines and
Complexity Classes

1.1 Turing machines

The simplest model of a Turing machine (TM) is the deterministic 1-tape
Turing machine. Despite its simplicity, this model is sufficiently general
to capture the notion of computability and allows us to define a very
intuitive concept of computational complexity. During this course we
will also use more general models of computation with the following
facilities:

• a separate read-only input tape;
• a separate write-only output tape;
• more general types of memory, e.g., k linear tapes (for k ≥ 1),

higher-dimensional memory space, etc.

The corresponding definitions of configurations, computations, etc.
need to be adjusted accordingly. We will do this for one specific model.

Definition 1.1. A (deterministic) Turing machine with separate input and
output tapes and k working tapes is given by

M = (Q, Γin, Γout, Σ, q0, F, δ)

where

• Q is a finite set of states,
• Σ is the finite working alphabet, with a distinguished symbol �

(blank),
• Γin, Γout are the input and output alphabets (often Γin, Γout = Σ),
• q0 ⊆ Q is the initial state,
• F ⊆ Q is the set of final states, and
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1.1 Turing machines

• δ : (Q \ F)× Γin × Σk →
Q× {−1, 0, 1} × Σk × {−1, 0, 1}k × (Γout ∪ {∗})

is the transition function.

A configuration is a complete description of all relevant data at a
certain moment of the computation (state, memory contents, input, etc.).
It is useful to distinguish between partial and total configurations.

Definition 1.2. Let M be a Turing machine. A partial configuration of M
is a tuple C = (q, w1, . . . , wk, p0, p1, . . . , pk) ∈ Q× (Σ∗)k ×Nk+1, where

• q is the current state,
• w1, . . . , wk are the inscriptions on the working tapes,
• p0 is the position on the input tape, and
• p1, . . . , pk are the positions on the working tapes.

The inscription of the ith working tape is given by a finite word
wi = wi0 . . . wim ∈ Σ∗. There are only blanks on the fields j > m of
the infinite tape. When, in addition to a partial configuration, the
inscriptions of the input and output tapes are given, one obtains a total
configuration of M.

The total initial configuration C0(x) of M on x ∈ Γ∗in is given by

C0(x) = (qo, ε, . . . , ε, 0, . . . , 0, x, ε)

with

• the initial state q0,
• empty working tapes, that is, w1 = w2 = · · · = wk = ε, (we denote

the empty word by ε),
• position 0 on all tapes,
• the inscription x on the input tape, and
• the inscription ε on the output tape.

Remark 1.3. A final configuration is a configuration C = (q, w, p, x, y) with
q ∈ F. The word y (the inscription on the output tape) is the output of
the final configuration C.

Successor configuration. Let C = (q, w1, . . . , wk, p0, p1, . . . , pk, x, y)
be a (total) configuration of a Turing machine M. The transition
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to the next configuration is determined by the value of the tran-
sition function δ on the current state q, and the values that have
been read while in C, i.e., the symbols xp0 read from the input
tape and the symbols w1 p1

, . . . , wk pk
read from the working tapes.

Let δ(q, xp0 , w1 p1
, . . . , wk pk

) = (q′, m0, a1, . . . , ak, m1, . . . , mk, b). Then
∆(C) := (q′, w′, p′, x, y′) is a successor configuration of C if

• w′i results from wi by replacing the symbol wi pi
with ai,

• p′i = pi + mi (for i = 0, . . . , k) and

• y′ =

y if b = ∗,

yb if b ∈ Γout.

Notation. We write C ⊢M C′, if C′ = ∆(C).

Definition 1.4. A computation of M on x is a sequence C0, C1, . . . of
(total) configurations of M with C0 = C0(x) and Ci ⊢M Ci+1 for all
i ≥ 0. The computation is complete if it is either infinite or it ends in a
final configuration.

The function computed by M is a partial function fM : Γ∗in → Γ∗out.
Thereby fM(x) = y iff the complete computation of M on x is finite and
ends in a final configuration with output y.

Definition 1.5. A k-tape acceptor is a k-tape Turing machine M (k ≥ 1),
whose final states F are partioned into a set F+ of accepting states and
a set F− of rejecting states. M accepts x, iff the computation of M on x
halts in a state q ∈ F+. M rejects x, iff the computation of M on x halts
in a state q ∈ F−.

Definition 1.6. Let L ⊆ Γ∗in be a language. M decides L if M accepts
all x ∈ L and rejects all x ∈ Γ∗in \ L. L is decidable if there exists an
acceptor M that decides L. We will write L(M) to denote the set of
inputs accepted by M.

In the following, we will often also use k-tape Turing machines
without distinguished input and output tapes. In these cases the first
working tape will also be the input tape while some other tape (or tapes)
will overtake the role of the output tape.
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Conventions. As long as not specified in a different way:

• a Turing machine (TM) shall be a k-tape Turing machine (for ev-
ery k ≥ 1), where k denotes the total number of tapes, possibly
including separate input and output tapes;

• Γ shall stand for the input alphabet.

1.2 Time and space complexity classes

Definition 1.7. Let M be a Turing machine and x some input. Then
timeM(x) is the length of the complete computation of M on x and
spaceM(x) is the total number of working tape cells used in the com-
putation of M on x. Let T, S : N → R≥0 be monotonically increasing
functions. A TM M is

• T-time bounded if timeM(x) ≤ T(|x|) for all inputs x ∈ Γ∗, and
• S-space bounded if spaceM(x) < S(|n|) for all inputs x ∈ Γ∗.

Definition 1.8.

(i) Dtimek(T) is the set of all languages L for which there exists a
T-time bounded k-tape TM that decides L.

(ii) Dspacek(S) is the set of all languages L for which there exists a
S-space bounded k-tape TM that decides L.

(iii) Dtime(T) =
⋃

k∈N Dtimek(T).
(iv) Dspace(S) =

⋃
k∈N Dspacek(S).

(v) Dtime-spacek(T, S) is the set of all languages L for which there is
a T-time bounded and S-space bounded k-tape TM that decides L.

(vi) Dtime-space(T, S) =
⋃

k∈N Dtime-spacek(T, S).

Important complexity classes are:

• Logspace :=
⋃

d∈N Dspace(d log n),
• (Ptime =) P :=

⋃
d∈N Dtime(nd),

• Pspace :=
⋃

d∈N Dspace(nd),
• Exptime :=

⋃
d∈N Dtime(2nd

),
• Expspace :=

⋃
d∈N Dspace(2nd

).

Attention: Some authors may also define Exptime as
⋃

d∈N Dtime(2dn).
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Elementary observations on the relationship between time and
space complexity lead to the following statements.

Theorem 1.9.

(a) Dtime(T) ⊆ Dspace(O(T)) for all functions T : N → N.

(b) Dspace(S) ⊆ Dtime
(
2O(S)) for all functions S : N → N with

S(n) ≥ log n.

Proof. (a) A k-tape Turing machine can visit at most k fields in one step.

(b) Because L ∈ Dspace(S), we can assume that L is decided by a TM
M with one input tape and k working tapes using space S.

For every input x (and n = |x|), any partial configuration is ob-
tained at most once during the computation of M on x. Otherwise, M
would run in an endless loop and could not decide L. The number of
partial configurations with space S(n) is bounded by

|Q| · (n + 1) · S(n)k · |Σ|S(n) = 2O(S(n)), whenever S(n) ≥ log n.

Here, (n + 1) is the number of possible positions of the input tape, S(n)k

the number of positions of the working tapes and |Σ|k·S(n) the number
of possible memory contents. Thus, timeM(x) ≤ 2O(S(n)). q.e.d.

Corollary 1.10. Logspace ⊆ P ⊆ Pspace ⊆ Exptime.

Theorem 1.11 (Tape reduction). Let S(n) ≥ n. Then

Dtime-space(T, S) ⊆ Dtime-space1(O(T · S), S).

Proof. (Simulation of a k-tape TM using a 1-tape TM.) Let M be a T-time
bounded and S-space bounded k-tape TM that decides L. The idea is to
simulate the k tapes of M using 2k tracks on a single tape of a 1-tape
TM M′. Track 2j− 1 of the tape of M′ will contain the inscription on
tape j of M and track 2j a mark (∗) at the current head position of tape
j of M.

Before simulating a single step of M, the head of M′ is at the first
(leftmost) mark. The simulation is accomplished in three phases.
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(i) M′ moves to the right up to the last mark and saves (in the state set)
the symbols at the current positions of M, that is, the information
needed to determine the transition of M. Time needed: at most
S(n) steps.

(ii) M′ determines the transition taken by M. This takes one step.

(iii) M′ returns to the first mark performing on its way back all neces-
sary changes on the tape. Time needed: at most S(n) steps.

M′ accepts (or rejects) iff M accepts (or rejects). At most S(n) fields
contain information. Therefore, the marks are at most S(n) fields apart.
The simulating 1-tape TM thus needs O(S(n)) steps and no additional
memory to simulate a step of M. The claim follows. q.e.d.

Where did we use that S(n) ≥ n? Consider an S-space bounded
2-tape Turing machine M, where S(n) < n and where the first tape is
a separate input tape. As long as M is reading the whole input, the
simulating 1-tape TM will have to go to the rightmost position on the
first tape to set the marks. This way, the two marks can be more than
S(n) fields away from each other.

Corollary 1.12. Dtime(T) ⊆ Dtime1(O(T2)).

This follows from Theorem 1.11 using the fact that spaceM(x) ≤
O(timeM(x)) for all M and all x. We also obtain:

Corollary 1.13. Dspace(S) ⊆ Dspace1(S) for S(n) ≥ n.

To simulate a k-tape TM using a 2-tape TM, the time complexity
increases by a logarithmic factor only.

Theorem 1.14. Dtime(T) ⊆ Dtime2(O(T · log T)) for T(n) ≥ n.

Proof (Outline). A k-tape TM M is simulated using a 2-tape TM M′:

• 2 tracks on the first tape of M′ are created for every tape of M.

• The second tape of M′ is only used as intermediate memory for
copy operations.
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The first tape of M′ is divided into blocks . . . , B−i, B−i+1, . . . , B−1, B0,
B1, . . . , Bi, where |B0| = 1, |Bj| = 2|j|−1 for j ̸= 0. All characters cur-
rently read by M can be found in block B0. If the head on one track of
M moves to the left, M′ moves the entire inscription on the correspond-
ing tapes to the right. This way, the current character will again be at
position B0. A clever implementation of this idea leads to a simulation
with at most logarithmic time loss: if M is T-time bounded, then M′ is
O(T · log T)-time bounded. q.e.d.

The complete proof can be found, e.g., in J. Hopcraft, J. Ullmann:
Introduction to Automata Theory, Languages and Computation, Addison-
Wesley 1979, pp. 292–295.

1.3 Speed-up and space compression

Definition 1.15. For functions f , g : N → R, we write f = o(g) to
denote limn→∞ f (n)/g(n) = 0.

Theorem 1.16 (Speed-up theorem).

Dtimek(T) ⊆ Dtimek(max(n, ε · T(n)))

for all k > 1, ε > 0, and T : N → R≥0 with n = o(T(n)).

Proof. Let M be a k-tape TM that decides L in time T(n). Choose m
in such way that ε ·m ≥ 16. Let Σ be the working alphabet of M. We
will construct a k-tape TM M′ that uses the working alphabet Σ ∪ Σm

so that it can encode m symbols of M by a single symbol. This way the
computation can be speeded up.

(1) M′ copies the input to a different tape compressing m symbols into
one. Then, M′ treats this working tape as the input tape. Time
needed: n steps for copying and ⌈ n

m ⌉ steps to return the head to
the first symbol of the compressed input.

(2) M′ simulates m steps of M taking 8 steps at a time. The following
operations are executed on the working tapes:
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(a) M′ saves the contents of both neighboring fields of the current
field “in the state set”. This needs 4 steps: one to the left, two
to the right, and one to the left again.

(b) M′ determines the result of the next m steps of M. This is
hard-coded in the transition function of M′. In m steps, M can
only use or change fields that are at most m steps away from
each other. In other words, it can only visit the current field of
M′ and both neighboring fields. Hence, M′ needs 4 steps to
implement this change.

(c) M′ accepts or rejects iff M accepts or rejects, respectively.

Let x be an input of length n. Then

timeM′ (x) ≤ n + ⌈n/m⌉+ 8⌈T(n)/m⌉ ≤ n + n/m + 8T(n)/m + 2.

Since n = o(T(n)), for every d > 0, there is an nd so that T(n)/n ≥ d
for all n ≥ nd. Therefore, n ≤ T(n)/d for n ≥ nd. For n ≥ max(2, nd),
we obtain 2n ≥ n + 2. Thus, M′ needs at most

2n +
n
m

+ 8
T(n)

m
≤ T(n)

(
2
d

+
1

md
+

8
m

)
= T(n)

(
2m + 8d + 1

md

)
steps. Set d = 2m+1

8 . Then the number of steps of M′ is bounded by

T(n)
(

8(2m + 1 + 2m + 1)
m(2m + 1)

)
=

16
m

T(n) ≤ εT(n)

for all n ≥ max(2, nd). The finite number of inputs of length < nd can
be accepted in nd time. q.e.d.

Corollary 1.17.

Dtime(T(n)) = Dtime(max(n, ε · T(n))

for all T : N → R with n = o(T(n)) and all ε > 0.

A similar but easier proof shows the following.
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Theorem 1.18 (Space compression).

Dspace(S) ⊆ Dspace(max(1, ε · S(n))

for all functions S : N → R≥0 and all ε > 0.

1.4 The Gap Theorem

In this and the following section, we address the question whether one
is able to solve more problems when more ressources are provided. If S2

increases faster than S1, does this mean that Dspace(S2) ) Dspace(S1)
(and analogously for time)? We will show that this does not hold in the
general case. Towards this, we will first prove the following lemma.

Lemma 1.19. Let M be a k-tape acceptor with max|x|=n spaceM(x) ≤
S(n) for almost all n (that is, all but finitely many) and let L(M) be the
set of all inputs accepted by M. Then, L(M) ∈ Dspace(S).

Proof. We build a k-tape acceptor M′ such that L(M′) = L(M) and
spaceM′ (x) ≤ S(|x|) for all x. The set X = {x : spaceM(x) > S(|x|)}
is finite by definition. Hence, for inputs x ∈ X, we can hard-code
the answer to x ∈ L(M) in the transition function M′ without using
additional space. q.e.d.

Theorem 1.20 (Gap Theorem). For any computable total function g :
N → N with g(n) ≥ n, there exists a computable function S : N → N

such that Dspace(S) = Dspace(g ◦ S).

Proof. Let M0, M1, . . . be a recursive enumeration of all Turing machines.
Consider the function Si(n) := max|x|=n spaceMi

(x) ∪ {∞} which re-
turns the space required by Turing machine Mi on words of length n.

Lemma 1.21. The set R := {(i, n, m) : Si(n) = m} is decidable.

Proof. For every triple (i, n, m), there is a time bound t ∈ N on compu-
tations of Mi which, on inputs of length at most n, use at most m tape

9



1.4 The Gap Theorem

Algorithm 1.1. S(n)

Input: n
y := 1
while there is an i ≤ n with (i, n, y) ∈ P do

choose the smallest such i
y := Si(n)

endwhile
S(n) := y

cells while no configuration occurs more than once. This bound t is com-
putable from (i, n, m). By simulating t steps of Mi on the (finitely many)
different inputs of length n, one can decide whether Si(n) = m. q.e.d.

We will use this result to construct a function S : N → N such that,
for every i ∈ N, either Si(n) ≤ S(n) for almost all n, or Si(n) ≥ g(S(n))
for infinitely many n. Towards this, consider the set P := {(i, n, y) ∈
N3 : y < Si(n) ≤ g(y)}. By Lemma 1.21 and since g is computable,
we obtain that P is decidable. Let S : N → N be the function defined
by Algorithm 1.1. As P is decidable, S is a computable total function. It
remains to show that

Dspace(g ◦ S) \Dspace(S) = ∅.

For any L ∈ Dspace(g ◦ S) we have L = L(Mi) for some i ∈ N. As L ∈
Dspace(g ◦ S), by definition Si(n) ≤ g(S(n)) holds for all n ∈ N. The
way S was constructed, we have Si(n) ≤ S(n) for all n ≥ i. Otherwise
S(n) < Si(n) ≤ g(S(n)) would hold for some i ≤ n, which is excluded
by the algorithm. Hence, Si(n) ≤ S(n) for almost all n and, according
to Lemma 1.19, we can conclude that L = L(Mi) ∈ Dspace(S). q.e.d.

Application. Consider g(n) = 2n. There exists a function S such that
Dspace(2S) = Dspace(S). That is, using more space does not necessarly
allow to solve more problems.

Analogously, one can show the follwing theorem on time complex-
ity.
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Theorem 1.22 (Gap Theorem for time complexity). For every com-
putable function g, there exists a computable function T with
Dtime(T) = Dtime(g ◦ T).

Hence, there are computable functions f , g, h so that,

• Dtime( f ) = Dtime(2 f ).

• Dtime(g) = Dtime(22g
).

• Dtime(h) = Dtime

2
2··
·2
}

h(n) times

.

1.5 The Hierarchy Theorems

In the previous section, we have shown that increasing complexity
bounds does not always allow us to solve more problems. We will now
investigate under which conditions a complexity class is fully contained
in another one. As in the proof of the undecidability of the Halting
Problem for Turing machines, we will use a diagonalization argument.
The proof will be kept very general with a view to complexity measures
beyond time and space.

Let M be a class of abstract machines (e.g., 2-tape Turing machines)
and R a ressource defined for machines in M (e.g., time or space) such
that, for every machine M ∈ M and every input x, RM(x) ∈ N∪ {∞}
is defined. For a function T : N → N, R(T) denotes the complexity
class of all problems that machines in M with T-bounded ressource R
can decide:

R(T) = {L : there is an M ∈ M deciding L

with RM(x) ≤ T(|x|) for all x}.

Furthermore, we assume that there is an function ρ encoding
machines in M over the alphabet {0, 1} in such way that the structure
and computational behavior of M can be extracted effectively from
ρ(M).

Let T, t : N → N be functions, M1 and M2 classes of acceptors,

11
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and R, r ressources defined for M1 and M2. We thus obtain the com-
plexity classes R(T) and r(t).

Definition 1.23. R(T) allows diagonalization over r(t) if there exists a
machine D ∈ M1 such that:

• D is T-bounded in ressource R and stops on every input. In other
words, L(D) ∈ R(T).

• For every machine M ∈ M2 that is t-bounded in ressource r,

ρ(M)#x ∈ L(D) ⇔ ρ(M)#x /∈ L(M).

holds for almost all x ∈ {0, 1}∗.

Theorem 1.24 (General Hierarchy Theorem). If R(T) allows diagonal-
ization over r(t), then R(T) \ r(t) ̸= ∅.

Proof. Let D be the diagonalization machine from Definition 1.23. We
will show that L(D) /∈ r(t). Otherwise, there would be a machine M
that is t-bounded in ressource r with L(D) = L(M). This, however, is
impossible since for almost all x:

ρ(M)#x ∈ L(D) ⇔ ρ(M)#x /∈ L(M)

holds. Therefore, L(M) ̸= L(D). q.e.d.

Definition 1.25. A function T : N → N is called fully time constructible
if there exists a Turing machine M such that timeM(x) = T(|x|) for all x.
Similarly, S : N → N is fully space constructible if spaceM(x) = S(|x|)
holds for some Turing machine M and all x.

Time and space constructible functions are “proper” functions
whose complexity is not much larger than their values. Most of the
functions we usually consider are fully time and space constructible.
Specifically, this is true for nk, 2n and n!. If two functions f and g have
this property, the functions f + g, f · g, 2 f and f g do as well.

Theorem 1.26. Let T, t : N → R≥0 such that T(n) ≥ n, with T time
constructible and t = o(T). Then Dtimek(t) ( Dtime(T) for all k ∈ N.

12
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Proof. We will show that Dtime(T) allows diagonalization over
Dtimek(t). Towards this, let D be a TM with the following proper-
ties:

(a) If M is a k-tape TM and x ∈ {0, 1}∗, then, on input ρ(M)#x, the
machine D simulates the computation of M on ρ(M)#ρ(x).

(b) For each M, there is a constant cM such that D needs at most cM

steps for the simulation of each step of M.

(c) At the same time, D simulates another TM N on separate tapes
which executes precisely T(n) steps on inputs of length n. By time
constructability of T, such a machine exists.

(d) After T(n) (n = |ρ(M)#x|) steps, D stops and accepts ρ(M)#x iff
the simulated computation of M on ρ(M)#x has rejected. Other-
wise, if M has already accepted or the computation has yet not
been completed, D rejects.

Let L(D) = {ρ(M)#x : D accepts ρ(M)#x}. We have:

• L(D) ∈ Dtime(T).

• For all M: T(n) ≥ cM · t(n) for almost all n (since t = o(T)).
Therefore, D can simulate the computation of M on ρ(M)#x for
almost all inputs ρ(M)#x in T(n) steps.

Thus, ρ(M)#x ∈ L(D) ⇐⇒ ρ(M)#x ̸∈ L(M). The claim follows from
the General Hierarchy Theorem. q.e.d.

Corollary 1.27 (Time Hierarchy Theorem). Let T(n) ≥ n, T be time-
constructible and t · log t = o(T). Then Dtime(t) ( Dtime(T).

Proof. By Theorem 1.14, there is a constant c such that Dtime(t) ⊆
Dtime2(c · t · log t). If t · log t = o(T), then also c · t · log t = o(T) holds.
Thus, by Theorem 1.26, there is a language

L ∈ Dtime(T) \Dtime2(c · t · log t) ⊆ Dtime(T) \Dtime(t). q.e.d.

Applications. As T(n) = nd+1 is time-constructible for each d ∈ N and
t(n) = nd log nd = O(nd log n) = o(nd+1) = o(T(n)), the following
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1.5 The Hierarchy Theorems

holds:

Dtime(nd) ( Dtime(nd+1).

Corollary 1.28. For any time constructible and increasing function
f with limn→∞ f (n) = ∞, the class P of all problems decidable in
polynomial time is strictly included in Dtime(n f (n)). In particular,
P ( Exptime.

Theorem 1.29 (Space Hierarchy Theorem). Let S, s : N → N be two
functions where S is space constructible and S(n) ≥ log n and s = o(S).
Then, Dspace(S) \Dspace(s) ̸= ∅.

Proof. As we can reduce, by Theorem 1.11, the number of working
tapes to one without increasing the space complexity, it is sufficient to
consider a TM with one input and one working tape. Since M is s-space
bounded, there are at most |Q| · (n + 1) · |Σ|s(n) · s(n) = (n + 1)2O(s(n))

different partial configurations of M. The machine M therefore stops
either after ≤ t(n) = 2cMs(n)+log(n+1) steps or it never halts. Here, cM

denotes a constant which depends on M but not on n. Since S is space-
constructible, there is a TM N with spaceN(x) = S(|x|) for all x. It
remains to show that Dspace(S) allows diagonalization over Dspace(s).
Consider the machine D that operates on input ρ(M)#x as follows:

(a) At first, mark a range of S(n) fields, by simulation of N. All
subsequent operations will take place within this range. If other
fields are accessed during the execution, D immediately stops and
rejects the input.

(b) D initializes a counter to t(n) and stores it on an extra tape.
(c) D simulates the computation of M on ρ(M)#x and decrements the

counter at every simulated step.
(d) If the simulation accesses a non-marked field or M does not stop

within t(n) steps, then D rejects the input ρ(M)#x. D also rejects if
M accepts the input ρ(M)#x. If D completes the simulation of a
rejecting computation of M on ρ(M)#x, then D accepts ρ(M)#x.

14
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We obtain:

• L(D) ∈ Dspace(S).
• It remains to show: if M is s-space bounded, then D can simulate

the computation of M on ρ(M)#x for almost all x completely (or
t(n) steps of it).

– Because t(n) = 2O(s(n)+log n), s = o(S) and S(n) ≥ log n, the
counter t(n) can be encoded by a word of length S(n) for all
n that are large enough.

– Assuming M has an alphabet with d different symbols. Then
D needs ≤ log d fields to encode a symbol of M (note that this
factor only depends on M but not on the input length).

– For the simulation of M, the machine D needs at most space
log d · spaceM(ρ(M)#x) ≤ log d · s(n) ≤ S(n) for almost all n.

For all sufficiently large x, the following holds: ρ(M)#x ∈
L(D) ⇐⇒ ρ(M)#x ̸∈ L(M). Therefore, Dspace(S) allows diag-
onalization over Dspace(s). The claim follows with the General
Hierarchy Theorem. q.e.d.

Remark 1.30. As an immediate consequence we obtain Logspace (
Pspace. Thus, at least one of the inclusions Logspace ⊆ P ⊆ Pspace
must be strict. However, at the present time, we do not know whether
Logspace ( P or P ( Pspace.

15



2 Nondeterministic complexity classes

2.1 Nondeterministic Turing machines

Nondeterministic Turing machines (NTM) are defined just as their de-
terministic counterparts except that the transition function generally
allows several possible transitions.

Again, the most important model is the k-tape TM. The possible
transitions are given by a function δ : Q×Σk → P(Q×Σk×{−1, 0, 1}k)
(modified accordingly if the first tape is a read-only input tape). Again,
we will mainly deal with acceptors, so that the set of final states is
partitioned F = F+ ∪ F−.

A configuration of a nondeterministic Turing machine M usually
has several successor configurations. Let Next(C) = {C′ : C ⊢M C′}
be the set of successor configurations of C. For each NTM M there is
an integer r ∈ N such that |Next(C)| ≤ r for all configurations C of M.
Given an input x for a nondeterministic Turing machine M, instead of a
(complete) sequential computation, we consider a computation tree TM,x

defined as follows:

• the root of TM,x is the initial configuration C0(x);
• the children of each node C are the elements of Next(C).

A computation path of M on x or, simply, a computation is a sequence
C0, . . . , Ct of configurations with C0 = C0(x) and Ci+1 ∈ Next(Ci), that
is, a path through TM,x starting at the root.

Definition 2.1. A nondeterministic Turing machine is T-time bounded
(respectively S-space bounded) if no computation M on inputs of length
n takes more than T(n) steps (uses more than S(n) fields).

Definition 2.2. Let M be a NTM and x its input. M accepts x, if there is
at least one computation of M on x that stops in an accepting configu-
ration. L(M) = {x : M accepts x} is the language accepted by M.

17



2.1 Nondeterministic Turing machines

Definition 2.3.
Ntime(T) := {L : there is a T-time bounded NTM with L(M) = L}.
Nspace(S) := {L : there is an S-space bounded NTM with L(M) = L}.
Other classes such as Ntimek(T) can be defined analogously.

Remark 2.4. In informal descriptions of nondeterministic Turing ma-
chines, nondeterministic steps are often called “guesses”. Thus, “Guess
a y ∈ Σm ” means: Perform a sequence of m nondeterministic steps so
that in the ith step, the ith symbol of y is nondeterministically chosen
from |Σ|. The (pseudo-)instruction is equivalent to a computation tree
of depth m with |Σ| many successors at all inner nodes and with |Σ|m
leaves labelled with y ∈ Σm.

Example 2.5 (A nondeterministic algorithm for the Reachability problem).
The following algorithm solves Reachability nondeterministically:

Algorithm 2.1 Nondeterministic Reachability

Input: G = (V, E), a directed graph, a, b ∈ V (|V| = n)
x := a
for n steps do

if x = b then accept else
guess y ∈ V with (x, y) ∈ E
x := y

endif

endfor
reject

If there is a path in G from a to b, then there is also one of length≤ n
(longer paths would include cycles). Therefore, the algorithm has an ac-
cepting computation iff there is a path from a to b. The required space is
≤ 3 · log n (log n for x, y and the counter). Hence, Reachability belongs
to the complexity class NLogspace = Nspace(O(log n)). As we have
seen in the exercises, Reachability also belongs to Dspace(O(log2 n)).
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2.2 Elementary properties of nondeterministic classes

In order to compare deterministic and nondeterministic complexity
classes, we often look at the configuration graphs of nondeterministic
Turing machines.

Definition 2.6. Let M be a nondeterministic Turing machine and s ∈
N∪ {∞}. Then

Conf[s] := {C : C is a configuration of M using space at most s},

and the successor relation on configuration defines the (directed) config-
uration graph G[M, s] = (Conf[s],⊢M).

For any S space bounded nondeterministic TM M and any input x
(with |x| = n), we have:

• The computation tree TM,x corresponds to the unravelling of
G[M, S(n)] from the input configuration C0(x).

• M accepts x if there is a path from C0(x) to some accepting config-
uration Ca in G[M, S(n)].

Theorem 2.7. Dtime(T) ⊆ Ntime(T) ⊆ Nspace(T) ⊆ Dtime(2O(T))
for all space-constructible T : N → R+ with T(n) ≥ log n.

Proof. The first inclusions Dtime(T) ⊆ Ntime(T) ⊆ Nspace(T) are
trivial. To prove the remaining inclusion, let M be a nondeterministic,
T-space bounded TM. Since every configuration uses at most T(n) fields,
G[M, T(n)] consists of at most 2T(n) different configurations. M accepts
x iff there is a path in G from C0(x) to an accepting configuration. In
time 2O(T(n)), a deterministic algorithm can

(a) construct G and
(b) decide for all accepting configurations Ca whether G contains a

path from C0(x) to Ca.

This follows from the fact that Reachability can be solved by a deter-
ministic algorithm in polynomial time. q.e.d.

Theorem 2.8 (Savitch’s Theorem). Nspace(S) ⊆ Dspace(S2) for any
space constructible function S(n) ≥ log n.
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2.2 Elementary properties of nondeterministic classes

Algorithm 2.2. Reach(C1, C2, k)

if k = 0 then
if C1 = C2 ∨ C2 ∈ Next(C1) then return 1 else return 0

else // k > 0
foreach C ∈ Conf[S(n)] do

if Reach(C1, C, k− 1) = 1∧ Reach(C, C2, k− 1) = 1 then
return 1

endif
endfor
return 0

endif

Proof. Let M be a S-space bounded NTM. Then there exists a constant d
such that M reaches at most 2dS(n) different configurations on inputs of
length n. If M has an accepting computation on x, then there is one that
is reachable in at most 2d·S(n) steps. Furthermore, every configuration
of M on x can be expressed by a word of length c · S(n), where c is a
constant. Here, we use that S(n) ≥ log n.

Again, the idea is to search the configuration graph for reachable
accepting configurations. Unlike in the previous argument, we cannot
explicitly construct the whole configuration graph or maintain a com-
plete list of reachable positions. However, we can solve the problem by
an on-the-fly construction of G[M, T(n)]. We define a recursive, deter-
ministic procedure Reach(C1, C2, k), see Algorithm 2.2, that, given two
configurations C1, C2 ∈ Conf[S(n)] and an integer k ∈ N, computes the
following output:

Reach(C1, C2, k) =


1 if M can reach configuration C2 from C1

in less than 2k steps;

0 otherwise.

Let f (n, k) = max{spaceReach(C1,C2,k) : C1, C2 ∈ Conf[S(n)]}. We have

• f (n, 0) = 0

• f (n, k + 1) ≤ c · S(n) + f (n, k), where c · S(n) is the space used to
write C (space constructibility of S)
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Algorithm 2.3. Mdet

Input: x
foreach accepting configuration Ca ∈ Conf[S(n)] do

if Reach(C0(x), Ca, d · S(n)) = 1 then accept
endfor
reject

Therefore, f (n, k) ≤ k · c · S(n). L(M) can be decided by Algorithm 2.3.
Since spaceMdet

(x) = O(S(n)) + f (n, d · S(n)) = O(S2(n)), we conclude
that L(M) ∈ Dspace(O(S2)) = Dspace(S2). q.e.d.

Corollary 2.9.

(i) NLogspace ⊆ P.

(ii) NPspace = Pspace.

(iii) NP ⊆ Pspace.

Proof.

(i) NLogspace := Nspace(O(log n)) ⊆ Dtime(2O(log n))
= Dtime(nO(1)) = P.

(ii) NPspace :=
⋃

d∈N Nspace(nd) ⊆ ⋃
d∈N Dspace(n2d) = Pspace.

(iii) NP :=
⋃

d∈N Ntime(nd) ⊆ NPspace = Pspace. q.e.d.

2.3 The Theorem of Immerman and Szelepcsényi

Definition 2.10. Let C be a class of languages (e.g., a complexity class).
Then, we define the class coC := {L : L ∈ C}, where L is denotes the
complement of L.

The deterministic complexity classes Dtime(T) and Dspace(T) are
obviously closed under the following operations:

• Union: L, L′ ∈ C =⇒ L ∪ L′ ∈ C;

• Intersection: L, L′ ∈ C =⇒ L ∩ L′ ∈ C;

• Complement: L ∈ C =⇒ L ∈ C, i.e., C = coC.
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2.3 The Theorem of Immerman and Szelepcsényi

The nondeterministic complexity classes Ntime(T) and Nspace(S) are
also closed under union and intersection. However, the closure under
complement is not obvious and possibly incorrect in many instances.
Actually, it is conjectured that the complexity class Ntime(T) is not
closed under complement. For Nspace(S), this conjecture had been
standing for a long time when Immerman and Szelepcsényi presented
the following surprising result in 1988.

Theorem 2.11 (Immerman und Szelepcsényi).

Nspace(S) = coNspace(S)

for any space constructible function S(n) ≥ log n.

The main idea of the proof is to “count inductively” all reachable
configurations. Once the number Rx(t) of configurations that can be
reached in t steps is known, we can decide for every configuration
C whether it is reachable in t + 1 steps. If so, this can be verified by
guessing an appropriate computation for C. Otherwise, we can verify
that C ̸∈ Next(D) for all Rx(t) configurations of D that are reachable in
t steps. More generally, for a nondeterministic decision procedure of L,
we only require that x ∈ L iff there is an accepting computation of M on
x. In particular, there can be rejecting computations on x although x ∈ L.
To sharpen our terminology accordingly, we introducing the notion of
an error-free nondeterministic computation or decision procedure.

Definition 2.12. An error-free nondeterministic computation procedure
for a function f is a nondeterministic Turing machine M with the
following properties:

(i) every computation of M on x stops with output either f (x) or ? (“I
don’t know”);

(ii) at least one computation of M produces the result f (x).

An error-free nondeterministic decision procedure for a language
L is an error-free nondeterministic computation procedure for its char-
acteristic function χL.

We will now prove the following theorem which implies Theo-
rem 2.11.
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Theorem 2.13. Let S(n) ≥ log n be space constructible. Then, for
every L ∈ Nspace(S) there is an error-free S-space bounded decision
procedure.

In particular, this implies that such a decision procedure also exists
for L and, consequently, L ∈ Nspace(S).

Proof. Let M be a S-space bounded NTM that decides L, C0(x) the
initial configuration of M on x and Conf[S(n)] the set of configurations
of M with space usage ≤ S(n). As S(n) ≥ log n, every configuration
C ∈ Conf[S(n)] can be described by a word of length S(n). Let

Reachx(t) := {C ∈ Conf[S(n)] : C is reachable from C0(x)

in ≤ t steps}

and set Rx(t) := |Reachx(t)|.
(1) There is a nondeterministic procedure M0 with input x, r, t, C, where
x is the input of M, r, t ∈ N and C ∈ Conf[S(n)] (n = |x|), such that
if r = Rx(t), then M0 decides error-free in space O(S(n)) whether C ∈

Algorithm 2.4. M0(x, r, t, C)

m := 0
foreach D ∈ Conf[S(n)] do

/* simulate (nondeterministically) at most t steps of M on x */
C′ = C0(x)
for t times do

if C′ ̸= D then
guess C′′ ∈ Next(C′)
C′ := C′′

endif
endfor
if C′ = D then /* D was reached */

m = m + 1
if C ∈ Next(D) then output 1

endif
endfor
if m = r then output 0 else output ?
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2.3 The Theorem of Immerman and Szelepcsényi

Algorithm 2.5. M1

Input: x
r := 1
for t = 0 to t(|x|) do

m := 0
foreach C ∈ Conf[S(n)] do

z := M0(x, r, t, C) /* Call of nondet. procedure M0 */
if z = 1 then m := m + 1
if z = ? then output ?

endfor
r := m

endfor
output r

Reachx(t + 1). It does not matter how M0 operates on (x, r, t, C) with
r ̸= Rx(t).
Remark. The nondeterministic simulation of at most t steps, for t =
2O(S(n)), can be done in space O(S(n)), e.g., by guessing a path step by
step.
Let r = Rx(t). We obtain:

• If C ∈ Reachx(t + 1), there is a computation with output 1. Further-
more, there is no computation with output 0 since no computation
passes through all configurations within t + 1 steps without reach-
ing C at least in the (t + 1)st step.

• If C ̸∈ Reachx(t + 1), there is a computation of M0 that outputs 0.
This is the one that follows all computation paths of length at most
t, checking for every configuration D met on such a path whether
D ̸∈ Next(C). Moreover, no computation returns 1.

(2) Clearly, there is a function t(n) = 2O(S(n)) such that M either halts
after t(n) steps or it enters a loop.

Lemma 2.14. There is an error-free nondeterministic O(S(n))-space
bounded computation procedure for the function x 7→ Rx(t(|x|)).

Proof. Algorithm 2.5 describes the procedure M1 which calls the non-
deterministic procedure M0 (usually several times) and is therefore
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nondeterministic itself. Each time M0(x, r, t, C) is called by M1, we have
r = Rx(t) for the current values of r and t because:

• t = 0 : r = 1 = Rx(0)

• t > 0 : r = |{C : there is a computation of M0 on input
(x, Rx(t− 1), t− 1, C) with output 1}| = Rx(t).

In particular, the value of r at the end of a successful computation of
M1 equals Rx(t(|x|)). Since there is a computation of M0 on (x, r, t, C)
for all r, t with r = Rx(t) that results in ?, there is also a computation
of M1 that computes the number Rx(t(|x|)). This proves the lemma.

q.e.d.

(3) Finally, Algorithm 2.6 specifies an error-free nondeterministic deci-
sion procedure for L = L(M).

• Let x ∈ L. Hence, there is a computation of M1 that results
in r = Rx(t(|x|)). Then there exists an accepting configura-
tion Ca ∈ Reachx(t(|x|)) and therefore a computation of M0 on
(x, r, t(|x|), Ca) with output 1. Therefore, there is a computation
of M̃ with output “x ∈ L”. On the other hand, it is clear that the
answer “x ∈ L” is produced only if there is an accepting configura-
tion Ca with C0(x) ⊢x

M Ca, that is, if indeed x ∈ L. We have thus
shown: x ∈ L iff there is a computation of M̃ with answer “x ∈ L”.

Algorithm 2.6. M̃

Input: x
r := M1(x) /* Call of M1 */
if r = ? then output ? else

foreach accepting Ca ∈ Conf[S(n)] do
z := M0(x, r, t(|x|), Ca)
if z = 1 then output “x ∈ L”
if z = ? then output ?

endfor
endif
output “x ̸∈ L”
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• Let x ̸∈ L: Again, there is a computation of M1 resulting in r =
Rx(t(|x|)). As no accepting configuration Ca is reachable from
C0(x), for every Ca there is a computation of M0 on (x, r, t(|x|), Ca)
resulting in 0. Therefore, there is a computation of M̃ with answer
“x ̸∈ L”. On the other hand, this answer is given only if M0 has
returned 0 for each Ca, that is, if no Ca is reachable from C0(x) or,
in other words, if x ̸∈ L.

Thus, we have shown that M̃ is an error-free nondeterministic
decision procedure for L = L(M) and therefore also for L. Obviously,
M̃ is O(S(n))-space bounded. By the Space Compression Theorem
(Theorem 1.18), we obtain L ∈ Nspace(S). q.e.d.

In particular, it follows that coNLogspace = NLogspace.
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3.1 Reductions

Definition 3.1. Let A ⊆ Σ∗, B ⊆ Γ∗ be two languages. A function
f : Σ∗ → Γ∗ is called a reduction from A to B if, for all x ∈ Σ∗, x ∈ A ⇔
f (x) ∈ B. To put it differently: If f (A) ⊆ B and f (Ā) = f (Σ∗ \ A) ⊆
(Γ∗ \ B) = B̄. Hence, a reduction from A to B is also a reduction from
Ā to B̄.

Let C be a complexity class (of decision problems). A class of
functions F provides an appropriate notion of reducibility for C if

• F is closed under composition, i.e.,

if f : Σ∗ → Γ∗ ∈ F
and g : Γ∗ → ∆∗ ∈ F ,

then g ◦ f : Σ∗ → ∆∗ ∈ F .

• C is closed under F : If B ∈ C and f ∈ F is a reduction from A to
B, then A ∈ C.

For two problems A, B we say that A is F -deducible to B if there
is a function f ∈ F that is a reduction from A to B.

Notation: A ≤F B.

Definition 3.2. A problem B is C-hard under F if all problems A ∈ C
are F -reducible to B (A ∈ C ⇒ A ≤F B).

A problem B is C-complete (under F ) if B ∈ C and B is C-hard
(under F ).

The most important notions of reducibility in complexity theory
are
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3.2 NP-complete problems: Sat and variants

• ≤p: polynomial-time reducibility (given by the class of all
polynomial-time computable functions)

• ≤log: log-space reducibility (given by the class of functions com-
putable with logarithmic space)

Closure under composition for polynomial-time reductions is easy
to show. If

f : Σ∗ → Γ∗ is computable in time O(nk) by M f and

g : Γ∗ → ∆∗ is computable in time O(nm) by Mg,

then there are constants c, d such that g ◦ f : Σ∗ → ∆∗ is computable in
time c · nk + d(c · nk)m = O(nk+m) by a machine that writes the output
of M f (whose length is bounded by c · nk) to a working tape and use it
as the input for Mg.

In case of log-space reductions this trivial composition does not
work since f (x) can have polynomial length in |x| and hence cannot be
completely written to the logarithmically bounded work tape. However,
we can use a modified machine M′

f that computes, for an input x and
a position i, the i-th symbol of the output f (x). Thus, g( f (x)) can be
computed by simulating Mg, such that whenever it accesses the i-th
symbol of the input, M′

f is called to compute it. The computation
of M′

f on (x, i) can be done in logarithmic space (space needed for

computation and for the counter i: log(nk)) the symbol f (x, i) written
to the tape needs only constant space. Furthermore, the computation of
Mg only needs space logarithmic in the input length as c · log(| f (x)|) =
c · log(|x|k) = c · k · log(|x|) = O(log(|x|)).

3.2 NP-complete problems: Sat and variants

NP can be defined as the class of problems decidable in nondeterministic
polynomial time:

Definition 3.3. NP =
⋃

d∈N Ntime(nd).

A different, in some sense more instructive, definition of NP is the
class of problems with polynomially-time verifiable solutions:
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Definition 3.4. A ∈ NP if, and only if, there is a problem B ∈ P and a
polynomial p such that A = {x : ∃y(|y| ≤ p(|x|) ∧ x#y ∈ B)}.

The two definitions coincide: If A has polynomially verifiable
solutions via B ∈ P and a polynomial p, then the following algorithm
decides A in nondeterministic polynomial time:

Input: x
guess y with |y| < p(n)
check whether x#y ∈ B
if answer is yes then accept else reject

Conversely, let A ∈ Ntime(p(n)), and M be a p-time bounded
NTM that decides A. A computation of M on some input of length n is
a sequence of at most p(n) configurations of length ≤ p(n). Therefore, a
computation of M can be described by a p(n)× p(n) table with entries
from Q× Σ ∪ Σ and thus by a word of length p2(n). Set

B = {x#y : y accepting computation of M on x}.

We can easily see that B ∈ P, and x ∈ L if, and only if, there exists y
with |y| ≤ p2(n) such that x#y ∈ B. Therefore, L ∈ NP.

Theorem 3.5.

(i) P ⊆ NP.
(ii) A ≤p B, B ∈ NP ⇒ A ∈ NP.

Clearly NP is closed under polynomial-time reductions:

B ∈ NP, A ≤p B =⇒ A ∈ NP.

B is NP-complete if

(1) B ∈ NP and
(2) A ≤p B for all A ∈ NP.

The most important open problem in complexity theory is Cook’s
hypothesis: P ̸= NP.
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3.2 NP-complete problems: Sat and variants

For every NP-complete problem B we have:

P ̸= NP ⇐⇒ B ̸∈ P.

We recall the basics of propositional logic. Let τ = {Xi : i ∈ N} be
a finite set of propositional variables. The set AL of propositional logic
formulae is defined inductively:

(1) 0, 1 ∈ PL (the Boolean constants are formulae).
(2) τ ⊆ PL (every propositional variable is a formula).
(3) If ψ, ϕ ∈ PL, then also ¬ψ, (ψ ∧ ϕ), (ψ ∨ ϕ) and (ψ → ϕ) are

formulae in PL.

A (propositional) interpretation is a map I : σ → {0, 1} for some σ ⊆
τ. It is suitable for a formula ψ ∈ PL if τ(ψ) ⊆ σ. Every interpretation
I that is suitable to ψ defines a logical value [[ψ]]I ∈ {0, 1} with the
following definitions:

(1) [[0]]I := 0, [[1]]I := 1.
(2) [[X]]I := I(X) for X ∈ σ.
(3) [[¬ψ]]I := 1− [[ψ]]I.
(4) [[ψ ∧ ϕ]]I := min([[ψ]]I, [[ϕ]]I).
(5) [[ψ ∨ ϕ]]I := max([[ψ]]I, [[ϕ]]I).
(6) [[ψ → ϕ]]I := [[¬ψ ∨ ϕ]]I.

A model of a formula ψ ∈ PL is an interpretation I with [[ψ]]I = 1.
Instead of [[ψ]]I = 1, we will write I |= ψ and say I satisfies ψ. A
formula ψ is called satisfiable if a model for ψ exists. A formula ψ is
called a tautology if every suitable interpretation for ψ is a model of ψ.

A formula ψ is obviously satisfiable iff ¬ψ is not a tautology. Two
formulae ψ and ϕ are called equivalent (ψ ≡ ϕ) if, for each I : τ(ψ) ∪
τ(ϕ) → {0, 1}, we have [[ψ]]I = [[ϕ]]I. A formula ϕ follows from ψ

(short, ψ |= ϕ) if, for every interpretation I : τ(ψ) ∪ τ(ϕ) → {0, 1} with
I(ψ) = 1, I(ϕ) = 1 holds as well.

Comments. Usually, we omit unnecessary parentheses. As ∧ and ∨
are semantically associative, we can use the following notations for
conjunctions and disjunctions over {ψi : i ∈ I}:

∧
i∈I ψi respectively∨

i∈I ψi. We fix the set of variables τ = {Xi : i ∈ N} and encode Xi
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by X(bin i), i.e., a symbol X followed by the binary representation of
the index i. This enables us to encode propositional logic formulae as
words over a finite alphabet Σ = {X, 0, 1,∧,∨,¬, (, )}.

Definition 3.6. sat := {ψ ∈ PL : ψ is satisfiable}.

Theorem 3.7 (Cook, Levin). sat is NP-complete.

Proof. It is clear that sat is in NP because

{ψ#I | I : τ(ψ) → {0, 1}, I |= ψ} ∈ P.

Let A be some problem contained NP. We show that A ≤p sat.
Let M = (Q, Σ, q0, F, δ) be a nondeterministic 1-tape Turing machine
deciding A in polynomial time p(n) with F = F+ ∪ F−. We assume
that every computation of M ends in either an accepting or rejecting
final configuration, i.e., C is a final configuration iff Next(C) = ∅. Let
w = w0 · · ·wn−1 be some input for M. We build a formula ψw ∈ PL
that is satisfiable iff M accepts the input w.

Towards this, let ψw contain the following propositional variables:

• Xq,t for q ∈ Q, 0 ≤ t ≤ p(n),
• Ya,i,t for a ∈ Σ, 0 ≤ i, t ≤ p(n),
• Zi,t for 0 ≤ i, t ≤ p(n),

with the following intended meaning:

• Xq,t : “at time t, M is in state q,”
• Ya,i,t : “at time t, the symbol a is written on field i,”
• Zi,t : “at time t, M is at position i.”

Finally,

ψw := start∧ compute∧ end

with

start := Xq0,0 ∧
n−1∧
i=0

Ywi ,i,0 ∧
p(n)∧
i=n

Y�,i,0 ∧ Z0,0

compute := nochange∧ change
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nochange :=
∧

t<p(n),a∈Σ,i ̸=j

(Zi,t ∧Ya,j,t → Ya,j,t+1)

change :=
∧

t<p(n),i,a,q

(
(Xq,t ∧Ya,i,t ∧ Zi,t) →

∨
(q′ ,b,m)∈δ(q,a)
0≤i+m≤p(n)

(Xq′ ,t+1 ∧Yb,i,t+1 ∧ Zi+m,t+1)
)

end :=
∧

t≤p(n),q∈F−
¬Xq,t

Here, start “encodes” the input configuration at time 0.
nochange ensures that no changes are made to the field at the current
position. change represents the transition function.

It is straightforward to see that the map w 7→ ψw is computable in
polynomial time.

(1) Let w ∈ L(M). Every computation of M induces an interpretation
of the propositional variables Xq,t, Ya,i,t, Zi,t. An accepting com-
putation of M on w induces an interpretation that satisfies ψw.
Therefore, ψw ∈ sat.

(2) Let C = (q, y, p) be some configuration of M, t ≤ p(n). Set

conf[C, t] := Xq,t ∧
p(n)∧
i=0

Yyi ,i,t ∧ Zp,t.

Please note that start = conf[C0(w), 0]. Thus,

ψw |= conf[C0(w), 0]

holds. For every non-final configuration C of M and all t < p(n),
we obtain (because of the subformula compute of ψw) :

ψw ∧ conf[C, t] |= ∨
C′∈Next(C)

conf[C′, t + 1].

(3) Let I(ψw) = 1. From (1) and (2) it follows that there is at least
one computation C0(w) = C0, C1, . . . , Cr = Cend of M on w with
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r ≤ p(n) such that I(conf[Ct, t]) = 1 for each t = 0, . . . , v. Further-
more, ψw |= ¬conf[C, t] holds for all rejecting final configurations
C of M and all t because of the subformula END of ψw. Therefore,
Cend is accepting, and M accepts the input w.

We have thus shown that ψw ∈ sat if, and only if, w ∈ A. q.e.d.

Remark. The reduction w 7→ ψw is particularly easy; it is computable
with logarithmic space.

A consequence from Theorem 3.7 is that sat is NP-complete via
Logspace-reductions.

Even though sat is NP-complete, the satisfiability problem may
still be polynomially solvable for some interesting formulae classes
S ⊆ PL. We show that for certain classes S ⊆ PL, S ∩ sat ∈ P while in
other cases S ∩ sat is NP-complete.

Reminder. A literal is a propositional variable or its negation. A
formula ψ ∈ PL is in disjunctive normal form (DNF) if it is of the form
ψ =

∨n
i=1

∧mi
j=1 Yij, where Yij are literals. A formula ψ is in conjunctive

normal form (CNF) if it has the form ψ =
∧n

i=1
∨mi

j=1 Yij. A disjunction∨
j Yij is also called clause. Every formula ψ ∈ PL is equivalent to a

formula ψD in DNF and to a formula ψC in CNF.

ψ ≡ ψD :=
∨

I:τ(ψ)→{0,1}
I(ψ)=1

∧
X∈τ(ψ)

XI

with

XI =

X if I(X) = 1

¬X if I(X) = 0 ,

and analogously for CNF.
The translations ψ 7→ ψD, ψ 7→ ψC are computable but generally

not in polynomial time. The formulae ψD and ψC can be exponentially
longer than ψ as there are 2|τ(ψ)| possible maps I : τ(ψ) → {0, 1}.

sat-dnf := {ψ in DNF : ψ satisfiable} and
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sat-cnf := {ψ in CNF : ψ satisfiable}

denote the set of all satisfiable formulae in DNF and CNF, respectively.

Theorem 3.8. sat-dnf ∈ Logspace ⊆ P.

Proof. ψ =
∨

i
∧mi

j=1 Yij is satisfiable iff there is an i such that no variable
in {Yij : j = 1, . . . , mi} occurs both positively and negatively. q.e.d.

Theorem 3.9. sat-cnf is NP-complete via Logspace-reduction.

Proof. The proof follows from the one of Theorem 3.7. Consider the
formula

ψw = start∧ compute∧ end .

From the proof, we see that start and end are already in CNF. The
same is true for the subformula nochange of compute, only change
is left. change is a conjunction of formulae that have the form

α : X ∧Y ∧ Z →
r∨

j=1
Xj ∧Yj ∧ Zj.

Here, r ≤ max(q,a) |δ(q, a)| is fixed, i.e., independent of n and w. But
we have

α ≡ (X∧Y∧Z →
r∨

j=1
Uj)∧

r∧
j=1

(Uj → Xj)∧ (Uj → Yj)∧ (Uj → Zj)).

Therefore, A ≤log sat-cnf for each A ∈ NP. q.e.d.

3.3 P-complete problems

A (propositional) Horn formula is a formula ψ =
∧

i
∨

j Yij in CNF where
every disjunction

∨
j Yj contains at most one positive literal. Horn for-

mulae can also be written as implications by the following equivalences:

¬X1 ∨ · · · ∨ ¬Xk ∨ X ≡ (X1 ∧ · · · ∧ Xk) → X,

¬X1 ∨ · · · ∨ ¬Xk ≡ (X1 ∧ · · · ∧ Xk) → 0.

34

3 Completeness

Let horn-sat = {ψ ∈ PL : ψ a satisfiable Horn formula}. We know
from mathematical logic:

Theorem 3.10. horn-sat ∈ P.

This follows, e.g., by unit resolution or the marking algorithm.

Theorem 3.11. horn-sat is P-complete via logspace reduction.

Proof. Let A ∈ P and M a deterministic 1-tape Turing machine, that
decides A in time p(n). Looking at the reduction w 7→ ψw from the
proof of Theorem 3.7, we see that the formulae start, nochange and
end are already Horn formulae. Since M was chosen to be deterministic,
i.e., |δ(q, a)| = 1, change takes the form (X ∧Y ∧ Z) → (X′ ∧Y′ ∧ Z′).
This is equivalent to the Horn formula (X ∧ Y ∧ Z) → X′ ∧ (X ∧ Y ∧
Z) → Y′ ∧ (X ∧ Y ∧ Z) → Z′. We thus have a logspace computable
function w 7→ ψ̂w such that

• ψ̂w is a Horn formula,
• M accepts w iff ψ̂w is satisfiable.

Therefore, A ≤log horn-sat. q.e.d.

Another fundamental P-complete problem is the computation of
winning regions in finite (reachability) games.

Such a game is given by a game graph G = (V, V0, V1, E) with a
finite set V of positions, partitioned into V0 and V1, such that Player 0
moves from positions v ∈ V0, moves from positions v ∈ V1. All moves
are along edges, and we use the term play to describe a (finite or
infinite) sequence v0v1v2 . . . with (vi, vi+1) ∈ E for all i. We use a
simple positional winning condition: Move or lose! Player σ wins at
position v if v ∈ V1−σ and vE = ∅, i.e., if the position belongs to the
opponent and there are no possible moves possible from that position.
Note that this winning condition only applies to finite plays, infinite
plays are considered to be a draw.

A strategy for Player σ is a mapping

f : {v ∈ Vσ : vE ̸= ∅} → V

with (v, f (v)) ∈ E for all v ∈ V. We call f winning from position v if
all plays that start at v and are consistent with f are won by Player σ.
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We now can define winning regions W0 and W1:

Wσ = {v ∈ V : Player σ has a winning strategy from position v}.

This leads to several algorithmic problems for a given game G:
The computation of winning regions W0 and W1, the computation of
winning strategies, and the associated decision problem

game := {(G, v) : Player 0 has a winning strategy for G from v}.

Theorem 3.12. game is P-complete and decidable in time O(|V|+ |E|).

A simple polynomial-time approach to solve game is to compute
the winning regions inductively: Wσ =

⋃
n∈N Wn

σ , where

W0
σ = {v ∈ V1−σ : vE = ∅}

is the set of terminal positions which are winning for Player σ, and

Wn+1
σ = {v ∈ Vσ : vE ∩Wn

σ ̸= ∅} ∪ {v ∈ V1−σ : vE ⊆ Wn
σ }

is the set of positions from which Player σ can win in at most n + 1
moves.

After n ≤ |V| steps, we have that Wn+1
σ = Wn

σ , and we can stop
the computation here.

To solve game in linear time, use the slightly more involved Algo-
rithm 3.1. Procedure Propagate will be called once for every edge in the
game graph, so the running time of this algorithm is linear with respect
to the number of edges in G.

The problem game is equivalent to the satisfiability problem for
propositional Horn formulae. We recall that propositional Horn formu-
lae are finite conjunctions

∧
i∈I Ci of clauses Ci of the form

X1 ∧ . . . ∧ Xn → X or

X1 ∧ . . . ∧ Xn︸ ︷︷ ︸
body(Ci)

→ 0︸︷︷︸
head(Ci)

.

A clause of the form X or 1 → X has an empty body.
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Algorithm 3.1. A linear time algorithm for game

Input: A game G = (V, V0, V1, E)
Output: Winning regions W0 and W1
foreach v ∈ V do /* 1: Initialisation */

win[v] := ⊥
P[v] := ∅
n[v] := 0

endfor
foreach (u, v) ∈ E do /* 2: Calculate P and n */

P[v] := P[v] ∪ {u}
n[u] := n[u] + 1

endfor
foreach v ∈ V0 do /* 3: Calculate win */

if n[v] = 0 then Propagate(v, 1)
endfor
foreach v ∈ V \V0 do

if n[v] = 0 then Propagate(v, 0)
endfor
returnwin
procedure Propagate(v, σ)
if win[v] ̸= ⊥ then return
win[v] := σ /* 4: Mark v as winning for player σ */
foreach u ∈ P[v] do /* 5: Propagate change to predecessors */

n[u] := n[u]− 1 if u ∈ Vσ or n[u] = 0 then Propagate(u, σ)
endfor

We will show that sat-horn and game are mutually reducible via
logspace and linear-time reductions.

(1) game ≤log-lin sat-horn
For a game G = (V, V0, V1, E), we construct a Horn formula ψG
with clauses

v → u for all u ∈ V0 and (u, v) ∈ E, and

v1 ∧ . . . ∧ vm → u for all u ∈ V1 and uE = {v1, . . . , vm}.

The minimal model of ψG is precisely the winning region of
Player 0, so

(G, v) ∈ game ⇐⇒ ψG ∧ (v → 0) is unsatisfiable.
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(2) sat-horn ≤log-lin game
For a Horn formula ψ(X1, . . . , Xn) =

∧
i∈I Ci, we define a game

Gψ = (V, V0, V1, E) as follows:

V = {0} ∪ {X1, . . . , Xn}︸ ︷︷ ︸
V0

∪ {Ci : i ∈ I}︸ ︷︷ ︸
V1

and

E = {Xj → Ci : Xj = head(Ci)} ∪ {Ci → Xj : Xj ∈ body(Ci)},

i.e., , Player 0 moves from a variable to some clause containing
the variable as its head, and Player 1 moves from a clause to some
variable in its body. Player 0 wins a play if, and only if, the play
reaches a clause C with body(C) = ∅. Furthermore, Player 0 has
a winning strategy from position X if, and only if, ψ |= X, so we
have

Player 0 wins from position 0 ⇐⇒ ψ is unsatisfiable.

In particular, game is P-complete, and sat-horn is solvable in
linear time.

3.4 NLogspace-complete problems

We already know that the reachability problem, i.e. to decide, given a
directed graph G and two nodes a and b, whether there is a path from
a to b in G, is in NLogspace.

Theorem 3.13. reachability is NLogspace-complete.

Proof. Let A be an arbitrary problem in NLogspace. There is a nonde-
terministic Turing machine M that decides A with workspace c log n.
We prove that A ≤log reachability by associating, with every input
x for M, a graph Gx = (Xx, Ex) and two nodes a and b, such that M
accepts x if, and only if, there is a path from a to b in Gx. The set of
nodes of Gx is

Vx := {C : C is a partial configuration of M with

workspace c log |x|} ∪ {b} ,
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and the set of edges is

Ex := {(C, C′) : (C, x) ⊢M (C′x)} ∪ {(Ca, b) : Ca is accepting} .

Recall that a partial configuration is a configuration without the descrip-
tion of the input. Each partial configuration in Vx can be described by a
word of length O(log |x|). Further we define a to be the initial partial
configuration of M. Clearly (Gx, a, b) is constructible with logarithmic
space from x and there is a path from a to b in Gx if, and only if, there
is an accepting computation of M on x. q.e.d.

We next discuss a variant of sat that is NLogspace-complete.

Definition 3.14. A formula is in r-CNF if it is in CNF and every clause
contains at most r literals: ψ =

∧n
i=1

∨mi
j=1 Yij with mi ≤ r for all i.

Furthermore, r-sat := {ψ in r-CNF : ψ is satisfiable}.

It is known that r-sat is NP-complete for all r ≥ 3.
To the contrary, 2-sat can be solved in polynomial time, e.g., by

resolution:

• The resolvent of two clauses with ≤ 2 literals contains at most 2
literals.

• At most O(n2) clauses with ≤ 2 literals can be formed with n
variables.

Hence, we obtain that Res∗(ψ) for a formula ψ in 2-CNF can be
computed in polynomial time. One can show an even stronger result.

Theorem 3.15. 2-sat is in NLogspace.

Proof. We show that {ψ : ψ in 2-CNF, ψ unsatisfiable} ∈ NLogspace.
Then, by the Theorem of Immerman and Szelepcsényi, also 2-sat ∈
NLogspace. The reduction maps a formula ψ ∈ 2-CNF to the following
directed graph Gψ = (V, E):

• V = {X,¬X : X ∈ τ(ψ)} represents the literals of ψ.

• E = {(Y, Z) : ψ contains a clause equivalent to (Y → Z)}.
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X1 X2 X3

¬X1 ¬X2 ¬X3

(a) Gψa

X1 X2

¬X1 ¬X2

(b) Gψb

Figure 3.1. Graphs for ψa = X1 ∧ (¬X1 ∨ X2) ∧ (X3 ∨ ¬X2) ∧ (¬X3 ∨ ¬X1) and
ψb = (X1 ∨ X2)

Example 3.16. Figures 3.1(a) and 3.1(b) show the graphs constructed for
an unsatisfiable and a satisfiable 2-CNF formula, respectively.

Lemma 3.17 (Krom-Criterion). Let ψ be in 2-CNF. ψ is unsatisfiable if,
and only if, there exists a variable X ∈ τ(ψ) such that Gψ contains a
path from X to ¬X and one from ¬X to X.

The problem

L = {(G, a, b) : G directed graph, there is a path from a to b}

is also called the labyrinth problem. A formula ψ is unsatisfiable if, and
only if, there exists a variable X ∈ τ(ψ) such that (Gψ, X,¬X) ∈ L and
(Gψ,¬X, X) ∈ L. Since L ∈ NLogspace, the claim follows. q.e.d.

Proof (of Lemma 3.17). We use the notation Y →∗
ψ Z to denote that there

exists a path from Y to Z in Gψ.
Let I be an interpretation such that I(ψ) = 1. Then, I(Y) =

1, Y →∗
ψ Z =⇒ I(Z) = 1. Hence, if X →∗

ψ ¬X →∗
ψ X, then ψ is

unsatisfiable.
Conversely, for all X ∈ τ(ψ), either not X →∗

ψ ¬X or not ¬X →∗
ψ X.

In this case, Algorithm 3.2 constructs an interpretation I such that
I(ψ) = 1.

It is not possible to produce conflicting assignments resulting from
Y →∗

ψ Z as well as Y →∗
ψ ¬Z since this would imply ¬Z →∗

ψ ¬Y and
Z →∗

ψ ¬Y, and hence Y →∗
ψ Z →∗

ψ ¬Y. But Y was chosen as to not have
this property.
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Algorithm 3.2

U := τ(ψ) ∪ ¬τ(ψ)
while U ̸= ∅ do

choose Y ∈ U such that Y →∗
ψ ¬Y does not hold

I(Y) := 1
U := U − {Y,¬Y}
foreach Z such that Y →∗

ψ Z do
I(Z) := 1
U := U − {Z,¬Z}

endfor
endwhile

Thus, Algorithm 3.2 constructs an interpretation I since, for every
variable X ∈ τ(ψ), either I(X) = 1 or I(¬X) = 1. However, due to the
nondeterministic choice of Y in each loop, the resulting interpretation
is not uniquely determined.

Let I be an interpretation constructed by Algorithm 3.2. It remains
to prove that I satisfies each clause (Z ∨ Z′), and thus ψ.

Otherwise, there is a clause (Z ∨ Z′) such that I(Z) = I(Z′) = 0,
i.e., I(¬Z) = 1. This implies, that the algorithm has chosen a literal Y
such that Y →∗

ψ ¬Z but Y →∗
ψ ¬Y does not hold. Since ¬Z →∗

ψ Z′, we
obtain Y →∗

ψ Z′ and hence I(Z′) = 1, which is a contradiction. q.e.d.

Remark 3.18. Formulae in 2-CNF are sometimes called Krom-formulae.

Theorem 3.19. 2-sat is NLogspace-complete.

Proof. We prove that reachability ≤log 2-sat.

Given a directed graph G = (V, E) with nodes a and b, we construct
the 2-CNF formula

ψG,a,b := a ∧ ∧
(u,v)∈E

(u → v) ∧ ¬b.

Clearly this defines a logspace-reduction from the reachability
problem to 2-sat. q.e.d.
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3.5 A Pspace-complete problem

Let us first recall two important properties of the complexity class
Pspace :=

⋃
k Dspace(nk).

• Pspace =
⋃

k∈N Nspace(nk) = NPspace because, by the Theorem
of Savitch, Nspace(S) ⊆ Dspace(S2).

• NP ⊆ Pspace since Ntime(nk) ⊆ Nspace(nk) ⊆ Dspace(n2k) ⊆
Pspace.

A problem A is Pspace-hard if B ≤p A for all B ∈ Pspace. A is
Pspace-complete if A ∈ Pspace and A is Pspace-hard.

As an example of Pspace-complete problems, we consider the
evaluation problem for quantified propositional formulae (also called
QBF for “quantified Boolean formulae”).

Definition 3.20. Quantified propositional logic is an extension of (plain)
propositional logic. It is the smallest set closed under disjunction, con-
junction and complement that allows quantification over propositional
variables in the following sense: If ψ is a formula from quantified propo-
sitional logic and X a propositional variable, then ∃Xψ, ∀Xψ are also
quantified propositional formulae.

Example 3.21. ∃X(∀Y(X ∨Y) ∧ ∃Z(X ∨ Z)).

By free(ψ) we denote the set of free propositional variables in ψ.
Every propositional interpretation I : σ → {0, 1} with σ ⊆ τ defines
logical values I(ψ) for all quantified propositional formulae ψ with
free(ψ) ⊆ σ. Let I be an interpretation and X ∈ τ a propositional
variable. Further, we write I[X = 1] for the interpretation that agrees
with I on all Y ∈ τ, Y ̸= X and interprets X with 1. Analogously, let
I[X = 0] be the interpretation with I[X/0](Y) = I(Y) for Y ̸= X and
I[X/0](X) = 0. Then, I(∃Xψ) = 1 if, and only if, I[X/0](ψ) = 1 or
I[X/1](ψ) = 1. Similarly, I(∀Xψ) = 1 if, and only if, I[X/0](ψ) = 1
and I[X/1](ψ) = 1.

Observe that if free(ψ) = ∅ the value I(ψ) ∈ {0, 1} does not
depend on a concrete interpretation I; we have either I(X) = 1 (ψ is
satisfied) or I(X) = 0 (ψ is unsatisfied). The formula ∃X(∀Y(X ∨ Y) ∧
∃Z(X ∨ Z)) is satisfied, for example.
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Algorithm 3.3. Eval(ψ, I)

Input: ψ, I
if ψ = X ∈ V then return I(X)
if ψ = (ϕ1 ∨ ϕ2) then

if Eval(ϕ1, I) = 1 then return 1 else return Eval(ϕ2, I)
endif
if ψ = (ϕ1 ∧ ϕ2) then

if Eval(ϕ1, I) = 0 then return 0 else return Eval(ϕ2, I)
endif
if ψ = ¬ϕ then return 1− Eval(ϕ, I)
if ψ = ∃Xϕ then

if Eval(ϕ, I[X = 0]) = 1 then return 1 else
return Eval(ϕ, I[X = 1])

endif
endif
if ψ = ∀Xϕ then

if Eval(ϕ, I[X = 0]) = 0 then return 0 else
return Eval(ϕ, I[X = 1])

endif
endif

Definition 3.22.

qbf := {ψ a quantified PL formula : free(ψ) = ∅ , ψ true}.

Remark 3.23. Let ψ = ψ(X1, . . . , Xn) be a propositional formula (i.e., one
that does not contain quantifiers). Then,

ψ ∈ sat ⇐⇒ ∃X1 . . . ∃Xnψ ∈ qbf.

qbf is therefore at least as hard as sat. Actually, we will show that qbf
is Pspace-complete.

Theorem 3.24. qbf ∈ Pspace.

Proof. The recursive procedure Eval(ψ, I) presented in Algorithm 3.3
computes the value I(ψ) for a quantified propositional formula ψ and
I : free(ψ) → {0, 1}.

This procedure uses O(n2) space. It is easy to see that I(ψ) is
computed correctly. q.e.d.
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Theorem 3.25. qbf is Pspace-hard.

Proof. Consider a problem A in Pspace and let M be some nk-space
bounded 1-tape TM with L(M) = A. Every configuration of M on
some input w of length n can be described by a tuple X̄ of propositional
variables consisting of:

Xq (q is state of M) : “M is in state q”,
X′a,i (a tape symbol, i ≤ nk) : “symbol a is on field i”,
X′′j (j ≤ nk) : “M is on position j”.

As in the NP-completeness proof for sat, we construct formu-
lae conf(X̄), next(X̄, Ȳ), inputw(X̄) and acc(X̄) with the following
intended meanings:

• conf(X̄) : X̄ encodes some configuration, i.e., exactly one Xq is
true, exactly one X′a,i is true for every i, and exactly one X′′j is true.

• inputw(X̄) : X̄ encodes the initial configuration of M on w =
w0 . . . wn−1:

inputw(X̄) := conf(X̄) ∧ Xq0 ∧
n−1∧
i=0

X′wi ,i ∧
nk∧

i=n
X′�,i ∧ X′′0 .

• acc(X̄) : X̄ is an accepting configuration:

acc(x̄) := conf(X̄) ∧ ∨
q∈E+

Xq.

• next(X̄, Ȳ) : Ȳ is a successor configuration of X̄:

next(X̄, Ȳ) :=
∧
i

(
X′′i →

( ∧
a,j ̸=i

(Y′a,j ↔ Xa,j) ∧

∧
δ(q,a)=(q′ ,b,m)

0≤m+i≤nk

(Xq ∧ X′a,i → Yq′ ∧Y′b,i ∧Y′′i+m)
))

.

Given w, these formulae can be constructed in polynomial time.

44

3 Completeness

Furthermore, we define the predicate

eq(X̄, Ȳ) :=
∧
q

(Xq ↔ Yq) ∧
∧
a,i

(X′a,i ↔ Y′a,i) ∧
∧

j
(X′′j ↔ Y′′j ).

We inductively construct formulae reachm(X̄, Ȳ) expressing that X̄ and
Ȳ encode configurations and Ȳ is accessible from X̄ in at most 2m steps.
For m = 0, let

reach0(X̄, Ȳ) := conf(X̄) ∧ conf(Ȳ) ∧ (eq(X̄, Ȳ) ∨ next(X̄, Ȳ)).

A naïve way to define reachm+1 would be

reachm+1(X̄, Ȳ) := ∃Z̄(reachm(X̄, Z̄) ∧ reachm(Z̄, Ȳ)).

But then |reachm+1| ≥ 2 · |reachm| so that |reachm| ≥ 2m and hence
grows exponentially. We can, however, construct reachm+1 differently
so that the exponential growth of the formula length is avoided by using
universal quantifiers:

reachm+1(X̄, Ȳ) :=

∃Z̄∀Ū∀V̄

(
(eq(X̄, Ū) ∧ eq(Z̄, V̄))

∨ (eq(Z̄, Ū) ∧ eq(Ȳ, V̄))

)
→ reachm(Ū, V̄) .

We now obtain:

|reach0| = O(nk) for some appropriate k, and

|reachm+1| = |reachm|+ O(nk).

Hence, |Reachm| = O(m · nk).

If M accepts the input w using space nk it performs at most ≤ 2c·nk

steps for some constant c. Set m := c · nk and

ψw := ∃X̄ ∃Ȳ(input(X̄) ∧ acc(Ȳ) ∧ reachm(X̄, Ȳ)).

Obviously, ψw is constructable from w in polynomial time and ψw ∈ qbf
if and only if w ∈ L(M). Therefore, qbf is Pspace-complete. q.e.d.
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4 Oracles and the polynomial hierarchy

4.1 Oracle Turing machines

Definition 4.1. A deterministic (respectively nondeterministic) oracle
Turing machine is a Turing machine with a designated oracle tape and
three special states ? (query), Y (yes) and N (no).

A configuration C of an Oracle Turing machine with k working
tapes and a distinguished oracle tape is a tuple

C = (q, p0, · · · , pk, w0, · · · , wk),

where

• q is the state of the Turing machine,
• p0, . . . , pk are the head positions (p0 is the head position of the

oracle tape), and
• w0 . . . , wk are the head inscriptions (w0 is the inscription of the

oracle tape).

The computation (respectively the computation tree) of an oracle
Turing machine depends on a previously defined oracle set A ⊆ Σ∗

(where Σ is the alphabet of M). The successor configurations of a
configuration C are defined as usual for q ̸= ? while the successor
configuration C′ for q = ? is defined as :

C′ =

(Y, 0, p1, . . . , pk, ε, w1, . . . wk) if w0 ∈ A

(N, 0, p1, . . . , pk, ε, w1, . . . , wk) if w0 ̸∈ A

where ε is the empty word. The oracle therefore determines whether
or not w0 (the inscription of the oracle tape) is in A. The machine
consequently enters the corresponding state (Y or N) and the inscription
of the oracle tape is erased.
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4.1 Oracle Turing machines

Definition 4.2. Let M be an Oracle Turing machine and A ⊆ Σ∗ be
some oracle set. Then the accepted language is

L(MA) := {x : M accepts the input x with oracle A}.

Based on the oracle set A, we define the following complexity
classes:

(i) PA := {L : there is a deterministic Oracle TM M
that decides L using oracle A in polynomial time}.

(ii) NPA := {L : there is a nondeterministic Oracle TM M
that decides L using oracle A in polynomial time}.

Let C be some class of languages, e.g., a complexity class. Then

PC =
⋃

A∈C
PA and NPC =

⋃
A∈C

NPA.

Example 4.3.

(a) Let B ∈ NP. Then B ∈ Psat. Since sat is NP-hard, there is a
polynomially computable function f with x ∈ B ⇐⇒ f (x) ∈ sat.
The following oracle algorithm then decides B:

Input: x
Compute f (x)
Query the oracle whether f (x) ∈ sat
if Y then accept
if N then reject

(b) It is likely that NP ( Psat as every B ∈ coNP is in Psat. One can
use the preceding algorithm and interchange the behaviour for the
answers Yes and No.

(c) Let B := {(G, k) : G a graph, ω(G) = k} where ω(G) is the max-
imal number of nodes of cliques in G. Reminder: The problem
clique := {(G, k) : k ≤ ω(G)} is NP-complete. It is straightfor-
ward to see that B ∈ Pclique:

48

4 Oracles and the polynomial hierarchy

Input: G, k
Query the oracle whether (G, k) ∈ clique
if N then reject else

Query the oracle whether (G, k + 1) ∈ clique
if N then accept
if Y then reject

endif

4.2 The polynomial hierarchy

Definition 4.4. We define the complexity classes Σp
k , Πp

k , and ∆p
k for

all k ∈ N:

• Σp
0 := Πp

0 := ∆p
0 := P

• Σp
k+1 := NPΣp

k

• Πp
k := coΣp

k = {A : A ∈ Σp
k }

• ∆p
k+1 := PΣp

k

Theorem 4.5. The classes Σp
k , Πp

k , and ∆p
k have the following elemen-

tary properties:

(i) ∆p
1 = P.

(ii) Σp
1 = NP, Πp

1 = coNP.

(iii) Σp
k+1 = NPΠp

k = NP∆p
k+1 .

(iv) P∆p
k = ∆p

k .

Proof. (i) ∆p
1 = PP = P.

(ii) Σp
1 = NPP = NP, Πp

1 = coΣp
1 = coNP.

(iii) Let B ∈ Σp
k+1, B = L(MA) and A ∈ Σp

k . Further, let M′ be the
machine obtained from M by interchanging the states Y and N.

Obviously, B = L(M′A) and therefore B ∈ NPΠp
k . In addition,

NP∆p
k+1 = NPPΣ

p
k = NPΣp

k = Σp
k+1 holds.

(iv) k = 0: P∆p
0 = PP = P = ∆p

0 .

k > 0: P∆p
k = PPΣ

p
k−1 = PΣp

k−1 = ∆p
k . q.e.d.
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4.2 The polynomial hierarchy

Theorem 4.6. For all k, Σp
k ∪Πp

k ⊆ ∆p
k+1 ⊆ Σp

k+1 ∩Πp
k+1.

Proof. For k = 0, the theorem states P ⊆ P ⊆ NP ∩ coNP. This is
obviously true.

For k > 0:

• Σp
k ⊆ PΣp

k and therefore also Πp
k ⊆ PΣp

k because PΣp
k is closed under

complement. Hence, Σp
k ∪Πp

k ⊆ ∆p
k+1.

• ∆p
k+1 = PΣp

k = coPΣp
k ⊆ coNPΣp

k = Πp
k+1.

∆p
k+1 = PΣp

k ⊆ NPΣp
n = Σp

k+1. Therefore, ∆p
k+1 ⊆ Σp

k+1 ∩ Πp
k+1.

q.e.d.

Theorem 4.7. If there is a k such that Σp
k+1 = Σp

k , then Σp
k+i = Πp

k+i =
Σp

k for all i > 0.

Proof. For i = 1, Σp
k+i = Σp

k+1 = Σp
k by assumption. By induction

hypothesis, assume Σp
k+i = Σp

k . Then,

Σp
k+i+1 = NPΣp

k+i = NPΣp
k = Σp

k+1 = Σp
k ,

and therefore also

Πp
k+i ⊆ Σp

k+i+1 = Σp
k for all i.

In particular, Πp
k ⊆ Σp

k holds. It remains to show that Σp
k ⊆ Πp

k . If
B ∈ Σp

k , then B ∈ Πp
k ⊆ Σp

k and, hence, B ∈ Πp
k . q.e.d.

Corollary 4.8. If there is a k > 0 with Σp
k ̸= P, then P ̸= NP.

Definition 4.9. PH :=
⋃

k∈N Σp
k is called the polynomial hierarchy.

In case Σp
k+i = Σp

k , we say that the polynomial hierarchy collapses
at level k.

Theorem 4.10. PH ⊆ Pspace.

Proof. By induction over k we show that Σp
k ⊆ Pspace for all k ∈ N:

Σp
0 = P ⊆ Pspace

Σp
k+1 = NPΣp

k ⊆ NPPspace ⊆ PspacePspace = Pspace.
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Here, PspacePspace is the class of languages that can be decided
by a deterministic polynomially-space bounded Oracle Turing machine
with some oracle in Pspace. When we speak about space complexity,
we also count the space used on the oracle tape. q.e.d.

If PH = Pspace, the polynomial hierarchy collapses:

Theorem 4.11. If PH = Pspace, there is some k with PH = Σp
k .

Proof. If PH = Pspace, then qbf ∈ PH holds. Consequently, there is
some k such that qbf ∈ Σp

k . For each A ∈ Pspace, we have A ≤p
m qbf,

i.e., A ∈ Σp
k . Thus, we obtain PH = Σp

k . q.e.d.

It is assumed that Σp
k ( Σp

k+1 for all k, the polynomial hierarchy is
strict and therefore, PH ( Pspace.

4.2.1 Additions

There are two natural complete problems for Σp
k and Πp

k :

Σk-QBF = {ψ = (∃X1)(∀X2) . . . (QkXk)ϕ : ϕ quantifier free,

ψ true}

Here, Qk is the universal quantifier if k is even and the existential
quantifier otherwise. Πk-QBF is defined analogously but the formulae
begin with universal quantifiers. The problem Σk-QBF is Σp

k -complete
and, analogously, Πk-QBF is Πp

k -complete. This generalises the NP-
completeness of sat.

Recall the definition of NP. A problem A ∈ NP if, and only if,
there is some B ∈ P and some polynomial p(n) such that A = {x :
∃py(x#y ∈ B)} where ∃py is an abbreviation for ∃y : |y| ≤ p(|x|). We
can generalise this definition to obtain a characterisation of Σp

k and Πp
k

as follows:

• A ∈ Σp
k if, and only if, there is some B ∈ P and some polynomial

p(n) such that

A = {x : (∃py1)(∀py2)(∃py3) . . . (Qp
k yk)x#y1#y2# . . . #yk ∈ B}.
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Here, Qk is the existential quantifier if k is odd and the universal
quantifier otherwise.

• Πp
k can be characterised analogously, using formulae that begin

with universal quantifiers.

4.3 Relativisations

To approach the P = NP question, it is interesting to see whether there
are oracles A, B such that

• PA = NPA

• PB ̸= NPB.

The first question is easy to answer since Pqbf = NPqbf = Pspace.
The answer to the second question is not as straightforward.

Theorem 4.12. There is an oracle B such that PB ̸= NPB.

Proof. Just as Turing machines, polynomially time-bounded oracle Tur-
ing machines can also be enumerated recursively (exercise). We choose
one such recursive enumeration {Mi : i ∈ N} of deterministic poly-
nomial oracle Turing machines such that the following holds for all
oracles A:

(1) PA = {L(MA
i ) : i ∈ N}.

(2) There is a sequence {pi(n) : i ∈ N} of polynomials with:

(i) Mi is pi-time bounded,

(ii) pi(n) ≤ pi+1(n) for all i, n.

Any given sequence {qi(n) : i ∈ N} of time bounds for {Mi : i ∈ N}
can be modified to such a sequence pi+1(n) by setting:

• p0(n) := q0(n),

• pi+1(n) := max(pi(n), qi+1(n)).

For every C ⊆ {0, 1}∗, let S(C) = {0n : there is an x ∈ C with |x| = n}.
We obviously have:

Lemma 4.13. S(B) ∈ NPB for all B.
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The goal now is to find some B such that S(B) ̸∈ PB. This B is
constructed as follows: At the beginning, initialise B0 := ∅ and k0 := 0.
For n > 0, construct Bn, kn as follows:

• Set kn so it is the smallest integer with 2kn > pn(kn) and kn >

pn−1(kn−1).
• If 0kn ∈ L(MBn−1

n ), then set Bn := Bn−1. Otherwise, let w(n) be
the lexicographically first word in {0, 1}k(n) for which the oracle is
not queried during the computation of MBn−1

n on input 0kn . Such a
word exists since pn(kn) < 2kn . Set Bn = Bn−1 ∪ {w(n)}.

Set B :=
⋃

n∈N Bn.

Lemma 4.14. 0kn ∈ L(MB
n ) ⇐⇒ 0kn ∈ L(MBn−1

n ) for all n.

The oracle is never queried for w ∈ B \ Bn−1 during the computa-
tion of MB

n on 0kn :

• for w = w(n) by construction and
• for w = w(m) with m > n because |w(m)| = k(m) > pn(kn).

Lemma 4.15. S(B) ̸∈ PB.

Otherwise, there would be some n ∈ N with S(B) = L(MB
n ).

However, this cannot be the case since, by definition, 0kn ∈ S(B) if, and
only if, there is some w such that |w| = kn and w ∈ B. By construction,
this is the case if, and only if, 0kn ̸∈ L(MBn−1

n ). This follows from the fact
that a word of length kn is added to B if, and only if, 0kn ̸∈ L(MBn−1

n ).
By Lemma 4.14, 0kn ̸∈ L(MBn−1

n ) is equivalent to 0kn ̸∈ L(MB
n ), and

therefore, S(B) ̸= L(MB
n ). q.e.d.

The problem whether C1 = C2 remains open for many pairs of
complexity classes C1 and C2. In most cases, there are oracles A and B
such that:

CA
1 = CA

2 and CB
1 ̸= CB

2 .

It has further been shown that for almost all oracles D: CD
1 ̸= CD

2 .
Contradictory relativisations of this kind show that, with respect to the
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4.3 Relativisations

problem C1 ̸= C2, proof techniques that ‘relativise’ (i.e., techniques that
are independent of oracles) fail.
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Alternating algorithms are a generalization of non-deterministic al-
gorithms based on two-player games. Indeed, one can view non-
deterministic algorithms as the restriction of alternating algorithms
to solitaire (i.e., one-player) games. Since complexity classes are mostly
defined in terms of Turing machines, we focus on the model of alter-
nating Turing machines. But note that alternating algorithms can be
defined in terms of other computational models, also.

Definition 5.1. An alternating Turing machine is a non-deterministic
Turing machine whose state set Q is divided into four classes Q∃ ,
Q∀ , Qacc , and Qrej. This means that there are existential, universal,
accepting and rejecting states. States in Qacc ∪ Qrej are final states. A
configuration of M is called existential, universal, accepting, or rejecting
according to its state.

The computation graph GM,x of an alternating Turing machine M
for an input x is defined in the same way as for a non-deterministic
Turing machine. Nodes are configurations (instantaneous descriptions)
of M, there is a distinguished starting node C0(x) which is the input
configuration of M for input x, and there is an edge from configuration
C to configuration C′ if, and only if, C′ is a successor configuration
of C. Recall that for non-deterministic Turing machines, the acceptance
condition is given by the reachability problem: M accepts x if, and
only if, in the graph GM,x some accepting configuration Ca is reachable
from C0(x). For alternating Turing machines, acceptance is defined by
the game problem (see Sect. 3.3): the players here are called ∃ and ∀,
where ∃ moves from existential configurations and ∀ from universal
ones. Further, ∃ wins at accepting configurations and loses at rejecting
ones. By definition, M accepts x if, and only if, Player ∃ has a winning
strategy from C0(x) for the game on GM,x.
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5.1 Complexity Classes

When considering the computation tree TM,x, which corresponds
to the unraveling of the configuration graph from C0(x), we call a
subtree TC accepting if ∃ has a winning strategy from C.

5.1 Complexity Classes

Time and space complexity are defined as for nondeterministic Turing
machines. For a function F : N → R, we say that an alternating Turing
machine M is F-time-bounded if for all inputs x, all computation paths
from C0(x) terminate after at most F(|x|) steps. Similarly, M is F-space-
bounded if no configuration of M that is reachable from C0(x) uses
more than F(|x|) cells of work space. The complexity classes Atime(F)
and Aspace(F) contain all problems that are decidable by, respectively,
F-time bounded and F-space bounded alternating Turing machines.

The following classes are of particular interest:

• ALogspace = Aspace(O(log n)),

• APtime =
⋃

d∈N Atime(nd),

• APspace =
⋃

d∈N Aspace(nd).

Example 5.2. qbf ∈ Atime(O(n)). We assume that, without loss of
generality, negations appear only in front of variables. An alternating
version of Eval(ψ, I) is the following:

Algorithm 5.1. Alternating Eval(ψ, I)

Input: (ψ, I) where ψ ∈ qbf und I : free(ψ) → {0, 1}
if ψ = Y then

if I(Y) = 1 then accept else reject
endif
if ψ = ϕ1 ∨ ϕ2 then “∃” guesses i ∈ {1, 2}; return Eval(ϕi, I)
if ψ = ϕ1 ∧ ϕ2 then “∀” chooses i ∈ {1, 2}; return Eval(ϕi, I)
if ψ = ∃Xϕ then “∃” guesses j ∈ {0, 1}; return Eval(ϕ, I[X = j])
if ψ = ∀Xϕ then “∀” chooses j ∈ {0, 1}; return Eval(ϕ, I[X = j])
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5.2 Alternating Versus Deterministic Complexity

There is a general slogan that parallel time complexity coincides with
sequential space complexity.

Theorem 5.3. Let S(n) be space-constructible with S(n) ≥ n. Then,

Nspace(S) ⊆ Atime(S2).

Proof. We use the same trick as in the proof of Savitch’s Theorem: Let
L be decided by a nondeterministic Turing machine M with space
bounded by S(n) and in time 2c·S(n). Let Conf[S(n)] be the set of
configurations of M with space ≤ S(n). The alternating algorithm
Reach(C1, C2, t) (Algorithm 5.2) decides whether the configuration C2 ∈
Conf[S(n)] can be reached from configuration C1 ∈ Conf[S(n)] in at
most 2t steps. The algorithm is correct because C2 is reachable from C1

in at most 2t steps if there is some C such that Reach(C1, C, t− 1) and
Reach(C, C2, t− 1) accept.

Let f (t) = maxC1,C2∈Conf[S(n)] timeReach(C1, C2, t). Furthermore,
f (0) = O(S(n)) and for all t > 0, f (t) = O(S(n)) + f (t− 1). Hence,

f (t) = (t + 1) ·O(S(n)).

L can then be decided as follows: At first, for an input x, the input
configuration C0 of M on x is constructed. Then, some accepting final
configuration Ca of M is guessed. We will accept if Reach(C0, Ca, S(n))

Algorithm 5.2. Reach(C1, C2, t)

Input: C1, C2, t
if t = 0 then

if C1 = C2 or C2 ∈ Next(C1) then accept else reject
else /* t > 0 */

existentially guess C ∈ Conf[S(n)]
universally choose (D1, D2) = (C1, C) and (D1, D2) = (C, C2)
Reach(D1, D2, t− 1)

endif
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accepts. This algorithm needs

(c · S(n) + 1)O(S(n)) = O(S2(n))

steps. By the linear Speed-Up Theorem, which also applies to alternat-
ing Turing machines, L ∈ Atime(S2). q.e.d.

Theorem 5.4. Let T be space-constructible and T(n) ≥ n. Then,
Atime(T) ⊆ Dspace(T2).

Proof. Let L ∈ Atime(T) and M be some alternating Turing machine
accepting L in time bounded by T(n). Then, there is some r so that
for all configurations C of M: |Next(C)| ≤ r. Algorithm 5.3, AT ,
computes whether or not the subtree TC is accepting (output 1) or
rejecting (output 0) for every configuration C in TM,x.

Obviously, this algorithm is working correctly. AT(C0(x)) decides
whether M accepts x and, hence, is a deterministic decision procedure
for L.

Algorithm 5.3. AT , deterministic evaluation of TC

Input: C
if C accepting then output 1
if C rejecting then output 0
if C existential then

for i = 1, . . . , r do
compute i-th successor configuration Ci of C
if F(Ci) = 1 then output 1

endfor
output 0

endif
if C universal then

for i = 1, . . . , r do
compute i-th successor configuration Ci of C
if F(Ci) = 0 then output 0

endfor
output 1

endif
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How much space does this algorithm need? Let C be some node
of height t in TM,x, i.e., all computations of M rooted at C need at most
t steps. Then:

spaceAT
(C) =

0 if t = 0

maxCi∈Next(C)(|Ci|+ spaceAT
(Ci)) if t > 0 .

Since Ci ∈ Next(C) is of height t− 1, we obtain spaceAT
(C) ≤ t · T(n)

and therefore spaceAT
(Co) ≤ T2(n). q.e.d.

In particular, we obtain

Theorem 5.5 (Parallel time complexity = sequential space complexity).

• APtime = Pspace.
• AExptime = Expspace.

Proof.

• Atime(nd) ⊆ Dspace(n2d) ⊆ Pspace,
Dspace(nd) ⊆ Nspace(nd) ⊆ Atime(n2d) ⊆ APtime.

• Atime(2nd
) ⊆ Dspace(22nd

) ⊆ Expspace,
Dspace(2nd

) ⊆ Atime(22nd
) ⊆ AExptime. q.e.d.

On the other hand, alternating space complexity corresponds to
exponential deterministic time complexity.

Theorem 5.6. For any space-constructible function S(n) ≥ log n, we
have that Aspace(S) = Dtime(2O(S)).

Proof. The proof is closely associated with the game problem. For any
S-space-bounded alternating Turing machine M, one can, given an
input x, construct the computation graph GM,x in time 2O(S(|x|) and
then solve the game problem in order to decide the acceptance of x
by M.

For the converse, we shall show that for any T(n) ≥ n and any
constant c, Dtime(T) ⊆ Aspace(c · log T).

Let L ∈ Dtime(T). Then there is a deterministic one-tape Turing
machine M that decides L in time T2. Let Γ = Σ ∪ (Q× Σ) ∪ {∗} and
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5.2 Alternating Versus Deterministic Complexity

t = G2(n). Every configuration C = (q, i, w) (in a computation on some
input of length n) can be described by a word

c = ∗w0 . . . wi−1(qwi)wi+1 . . . wt∗ ∈ Γt+2.

The ith symbol of the successor configuration depends only on the
symbols at positions i− 1, i, and i + 1. Hence, there is a function fM :
Γ3 → Γ such that, whenever symbols a−1, a0, and a1 are at positions
i− 1, i and i + 1 of some configuration c, the symbol fM(a−1, a0, a1) will
be at position i of the successor configuration c′.

The alternating algorithm A (Algorithm 5.4) decides L using space
O(log T(n)). If M accepts the input x, then Player ∃ has the following
winning strategy for the game on CA,x: the value chosen for s is the time
at which M accepts x, and (q+a), i are chosen so that the configuration
of M at time s is of the form ∗w0 . . . wi−1(q+a)wi+1 . . . wt∗. At the jth
iteration of the loop (that is, at configuration s − j), the symbols at
positions i− 1, i, i + 1 of the configuration of M at time s− j are chosen
for a−1, a0, a1.

Conversely, if M does not accept the input x, the ith symbol of
the configuration at time s is not (q+a). The following holds for all
j: if, in the jth iteration of the loop, Player ∃ chooses a−1, a0, a1, then

Algorithm 5.4. Alternating simulation of a determinisitc computation

existentially guess s ≤ T2(n) = t
existentially guess i ∈ {0, . . . , s}
existentially guess (q+a) ∈ Q+

acc × Σ
b := (q+a)
for j = 1, . . . , s do

existentially guess (a−1, a0, a1) ∈ Γ3

if fM(a−1, a0, a1) ̸= b then reject
universally choose k ∈ {−1, 0, 1}
b := ak
i := i + k

endfor
if the i-th symbol of the input configuration of M on x equals b then accept
else reject
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either f (a−1, a0, a1) ̸= b, in which case Player ∃ loses immediately, or
there is at least one k ∈ {−1, 0, 1} such that the (i + k)th symbol of the
configuration at time s− j differs from ak. Player ∀ then chooses exactly
this k. At the end, ak will then be different from the ith symbol of the
input configuration, so Player ∀ wins.

Hence A accepts x if, and only if, M does so. q.e.d.

In particular, it follows that

• ALogspace = Ptime;
• APspace = Exptime.

The relationship between the major deterministic and alternating
complexity classes is summarised in Fig. 5.1.

Logspace ⊆ Ptime ⊆ Pspace ⊆ Exptime ⊆ Expspace
|| || || ||

ALogspace ⊆ APtime ⊆ APspace ⊆ AExptime

Figure 5.1. Relationship between deterministic and alternating complexity
classes

5.3 Alternating Logarithmic Time

For time bounds T(n) < n, the standard model of alternating Turing
machines needs to be modified a little by an indirect access mecha-
nism. The machine writes down, in binary, an address i on an sep-
arate index tape to access the ith symbol of the input. Using this
model, it makes sense to define, for instance, the complexity class
ALogtime = Atime(O(log n)).

Important examples of problems in ALogtime are

• the model-checking problem for propositional logic;
• the data complexity of first-order logic.

The results mentioned above relating alternating time and sequen-
tial space hold also for logarithmic time and space bounds. Note,
however, that these do not imply that ALogtime = Logspace, owing to
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the quadratic overheads. It is known that ALogtime ⊆ Logspace, but
the converse inclusion is an open problem.

Exercise 5.1. Construct an ALogtime algorithm for the set of palin-
dromes (i.e., words that are same when read from right to left and from
left to right).
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Probabilistic algorithms are algorithms that can, at certain points during
their computation, choose one possibility for the next operation at
random from a number of different possibilities. They can thus be seen
as a modification of nondeterministic algorithms. The computation
result of such an algorithm therefore is not a definite answer but a
random variable: it depends on the decisions made “at random” during
the computation. Please note that this has nothing to do with an
assumption on the distribution of possible inputs. The probability does
not concern the inputs but rather the decisions during the computation.

Probabilistic algorithms play an important role in many different
areas. They are often simpler and more efficient than the best known
deterministic algorithms for the same problem. Even more, some
important areas such as algorithmic number theory or cryptology are
inconceivable without probabilistic algorithms. We will look at two
examples.

6.1 Examples of probabilistic algorithms

6.1.1 Perfect matching and symbolic determinants

We first recall the definition of the marriage problem. Given is a bipartite
graph G = (U, V, E) with two disjoint sets of nodes U = {u1, . . . , un}
and V = {v1, . . . , vn} of the same size and a set of edges E ⊆ U × V.
The problem is to determine whether G permits a perfect matching, i.e., a
subset M ⊆ E such that for all u ∈ U there is a v ∈ V and for all v ∈ V
there is a u ∈ U such that (u, v) ∈ M. We can rephrase the problem
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like this: Is there a permutation π ∈ Sn so that (ui, vπ(i)) ∈ E for all
i ∈ {1, . . . , n}?

The marriage problem can further be described as a problem over
matrices and determinants. The graph G = (U, V, E) is then charac-
terised by a matrix AG whose items are variables xij or 0.

AG := (zij)1≤i,j≤n with zij :=

xij if (ui, vj) ∈ E

0 otherwise.

The determinant of AG is det AG := ∑π∈Sn
sgn(π) ∏n

i=1 ziπ(i)
where sgn(π) = 1 if π is the product of an even number of transposi-
tions and sgn(π) = −1 otherwise. Obviously, det AG is a polynomial in
Z[x11, . . . , xnn] (i.e., a polynomial with coefficients in Z) of total degree
n that is linear in every variable xij.

A permutation π ∈ Sn defines a perfect matching if and only if

∏n
i=1 zij ̸= 0. Since all of these products are pairwise different, we

obtain

G allows a perfect matching ⇐⇒ det AG ̸= 0.

Hence, if we were able to compute symbolic determinants (i.e.,
determinants of matrices that can contain variables) efficiently, we
could use this to solve the marriage problem.

Determinants using Gauss elimination. We know from linear alge-
bra how to compute determinants from numerical matrices: the given
matrix is transformed (e.g., by interchanging lines or by adding linear
combinations of lines to other lines) into a triangular matrix that has
the same determinant. The products of the diagonal elements are then
calculated to obtain the determinant. This requires O(n3) arithmetical
operations. Further, the entries of the transformed matrices remain
polynomially-bounded since they are subdeterminants of the given
matrix.

Unfortunately, the application of this procedure to symbolic matri-
ces is problematic. The entries of the transformed matrices are rational
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functions in the entries of the original matrix and these functions gen-
erally have exponentially many terms. Even the problem whether a
fixed mononom, e.g., x11x23x31, appears in the determinant of AG is
NP-hard. Hence, Gauss elimination does not seem to be useful to
calculate symbolic determinants.

However, we do not need to compute the determinant of AG. It
suffices to know whether it is 0 or not. The idea for the probabilistic
algorithm solving the perfect matching problem is to substitute a tuple
ā = (a11, . . . , ann) of random numbers into the matrix AG and then to
calculate the determinant of the numerical matrix AG(ā) using Gauss
elimination.

If we obtain that det AG(ā) ̸= 0 then the symbolic determinant
det AG is obviously not 0. The inverse does not hold: It might be the
case that we incidentally find a root ā of det AG and, hence, obtain
det AG ̸= 0.

The following lemma allows us to control the probability to ob-
tain the roots of a non-identically disappearing polynomial det AG by
finding a suitable set to choose ā from.

Lemma 6.1. Let p(x1, . . . , xn) be a polynomial such that p ̸= 0 and
every xi is at most of degree d in p. Then, for every m ∈ N,

|{(a1, . . . , an) ∈ {0, . . . , m− 1}n : p(a1, . . . , an) = 0}| ≤ ndmn−1.

Proof. We will use induction over n. For n = 1, the induction hypothesis
is a known fact: no polynomial p ̸= 0 with one variable of degree d has
more than d roots. Further, consider n > 1. We write p(x1, . . . , xn) as a
polynomial in xn with coefficients from Z[x1, . . . , xn−1]:

p(x1, . . . , xn) = p0(x1, . . . , xn−1) + p1(x1, . . . , xn−1)xn

+ · · ·+ pd(x1, . . . , xn−1)xd
n.

Let now p(a1, . . . , an) = 0 for (a1, . . . , an) ∈ {0, . . . , m− 1}n. We
consider two cases:

(a) pd(a1, . . . , an−1) = 0. By induction hypothesis, this is the case for at
most (n− 1)dmn−2 tuples (a1, . . . , an−1) ∈ {0, . . . , m− 1}n−1. Thus,
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there are at most (n− 1)dmn−1 roots (a1, . . . , an) ∈ {0, . . . , m− 1}n

of p with pd(a1, . . . , an−1) = 0.
(b) pd(a1, . . . , an−1) ̸= 0. Then, p(a1, . . . , an−1, xn) is a polynomial of

degree d in variables xn, for which there are at most d roots an. In
addition to the roots in case (a), there are, hence, at most dmn−1

new roots.

Hence, we have at most ndmn−1 roots (a1, . . . , an) ∈ {0, . . . , m − 1}n.
q.e.d.

Consequently, we obtain a probabilistic algorithm for the perfect
matching problem.

Input: a matrix AG for a bipartite graph G = (U, V, E), |U| = |V| = n
a security parameter k ∈ N

Set m := 2n2

for i = 1, . . . , k do
Choose at random numbers a11, . . . , ann ∈ {0, . . . , m− 1}
Compute det AG(ā) using Gauss elimination
if det AG(ā) ̸= 0 then output ‘There is a perfect matching’

endfor
output ‘There is probably no perfect matching’

Since the computation of numerical determinants can be done in
polynomial-time using Gauss elimination, this is also a polynomial-time
algorithm. If the algorithm finds a tuple ā such that det AG ̸= 0, it will
return ‘There is a perfect matching’ and this is correct. If it does not find
such a ā after k iterations, it will return ‘There is probably no perfect
matching’. This, however, is not always correct. The error probability,
i.e., the probability that the algorithm does not find a non-root for a
non-disappearing polynomial det AG, can be estimated using the above
lemma.

Since det AG is linear in each of the n2 variables, the ratio of tuples
ā ∈ {0, . . . , m− 1}n2

that are roots of det AG is at most

n2dmn2−1

mn2 =
n2d
m

=
n2

2n2 =
1
2

.
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The probability to find only such tuples in k iterations is at most
2−k. Please note this is not a probability statement with respect to
bipartite graphs or symbolic determinants. It is indeed a statement
on the error probability of a probabilistic algorithm with respect to its
random decisions and is valid for all bipartite graphs.

6.1.2 A probabilistic prime number test

Two central problems of algorithmic number theory are the existence of
polynomial algorithms for

(1) Primality testing: given an integer n ∈ N, determine whether it is
prime;

(2) Factoring: given an integer n ∈ N, calculate its factorisation (its
prime factors).

Primality testing has a long history going back to ancient Greece.
The first systematic approach, the Sieve of Eratosthenes, where multiples
of primes are successively removed from a list of numbers leaving
only the primes, dates back to around 240 BC. While being based
on multiplication only, this approach yields an algorithm that is still
exponential in the size of the input like the naïve approach.

Obviously, primes ∈ coNP since each non-trivial factor is a polyno-
mial witness for compositeness. In 1974, Pratt could prove membership
in NP with some more effort.

A year later, Miller presented a deterministic polynomial-time
algorithm based on Fermat’s Little Theorem, but its correctness depends
on the assumption of the Extended Riemann Hypothesis. In 1980,
Rabin modified this test and obtained an unconditional but randomised
polynomial-time algorithm, thus placing the problem in coRP. Later,
in 1987, Adleman and Huang proved the quite involved result that
primes ∈ RP, and hence in ZPP.

Only recently, Agrawal, Kayal and Saxena presented a deterministic
polynomial-time algorithm based on a generalisation of Fermat’s Little
Theorem. The first version of their algorithm had a running-time
in O(n12), which could be improved to O(n7.5), and lately to O(n6).
Depending on some number-theoretic hypotheses, the running time
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might be further improved to O(n3). For details see [Agrawal, Kayal,
Saxena. primes is in P. Annals of Mathematics 160 (2004)].

However, the currently long running-time renders this algorithm
practically unusable since it is outperformed by the simple and efficient
probabilistic methods which are able to determine with an almost
arbitrarily high probability whether a given number is prime.

Unfortunately, neither of these methods can be used to efficiently
obtain a factorisation for composite numbers. In fact, it is widely as-
sumed that the factorisation of integers is difficult in practice, and many
modern public-key cryptology systems are based on this assumption.

In the following we will present the randomised primality test due
to Rabin and Miller which is based on Fermat’s Little Theorem.

Definition 6.2. For n ∈ N, let

Z∗
n := {a ∈ {1, . . . , n− 1} : gcd(a, n) = 1}.

Note that (Z∗
n, · (mod n)) is a group.

Theorem 6.3 (Fermat). Let p be prime. Then, for all a ∈ Z∗
p,

ap−1 ≡ 1 (mod p) .

Proof. Let f (p, a) be the number of different non-periodic colourings of
cycles of length p with a colours. Since p is prime and the period must
be a divisor of p for every periodic colouring, only periods of length 1
are possible, that is, only monochrome colourings. The number of
colourings of p nodes with a colours is ap, the number of monochrome
colourings is a and, hence, f (p, a) = (ap − a)/p = a(ap−1 − 1)/p.
We obtain that p is a divisor of ap−1 − 1 and therefore, ap−1 ≡ p
(mod p). q.e.d.

One might hope that also the inverse holds, i.e., for every composed
number n, there is an a ∈ Z∗

n such that an−1 ̸≡ 1 (mod n). If one could
show furthermore that there are “many” a ∈ Z∗

n with this property,
a prime number test could work as follows: Given some n, it would
choose an a ∈ Z∗

n at random. Then, it would check whether an−1 ≡ 1
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(mod n). For this approach to work, we need to be able to verify
whether an−1 ̸≡ 1 (mod n) in polynomial time (with respect to the
length of the input, i.e., log n). This can be done by repeating the square
operation modulo n: For k = ⌊log n⌋, compute the numbers b0, . . . , bk

with b0 := a, bi+1 := (bi)2 (mod n), i.e., bi = a2i
(mod n). Let n− 1 =

∑i=1 ui2i be the binary representation of n− 1, with ui ∈ {0, 1}. Then,

an−1 = a∑i ui2i
= ∏

i
aui2i ≡ ∏

ui=1
bi (mod n).

Unfortunately, the Fermat test in this simple form fails. This is
because the inversion of Fermat’s Little Theorem is incorrect. There are
(even infinitely many) composites n ∈ N such that an−1 ≡ 1 (mod n)
for all a ∈ Z∗

n. These numbers are called Carmichael numbers. The first
Carmichael numbers are 561 and 1729.

The idea works, however, for every non-Carmichael number. For
n ∈ N, let

Fn := {a ∈ Z∗
n : an−1 ≡ 1 (mod n)}.

Lemma 6.4. If n is composite and not a Carmichael number, then
|Fn| ≤ |Z∗n|/2.

Proof. It is easy to see that (Fn, · (mod n)) is a subgroup of (Z∗
n, ·

(mod n)). Since n is neither prime nor a Carmichael number, Fn ( Z∗n.
The order of a subgroup is always a divisor of the order of the group,
i.e., |Z∗

n| = q|Fn| for some q ≥ 2. q.e.d.

Hence, the fact that our original idea for a prime number test
does not work is simply due to the Carmichael numbers. It is, however,
possible to refine the Fermat test and treat Carmichael numbers properly.
There are two variants of such probabilistic primality tests, the Solovay-
Strassen test and the Rabin-Miller test, which will be described in the
following. It is based on the following observation.

Lemma 6.5. Let p be prime. Then, for all a ∈ Z∗
p if a2 ≡ 1 (mod p),

then a ≡ ±1 (mod p).
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Proof. If p is prime, then (Z∗
p, + (mod n), · (mod n)) is a field and

fields have only the trivial roots 1 and −1. q.e.d.

Theorem 6.6.

(i) The Rabin-Miller primality test (Algorithm 6.1) can be performed
in polynomial-time (with respect to log n).

(ii) If n is prime, the test always returns “n is probably prime”.

(iii) If n is composite, the test returns “n is composite” with a probabil-
ity of ≥ 1− 2−k.

Hence, the result “n is composed” is always correct, and the answer
“n is probably prime” means that n is indeed prime with a very high
probability.

Proof. Proposition (i) is obviously correct. Proposition (ii) results from
Theorem 6.3 and Lemma 6.5. If n is prime, then for all a used in the
test:

• an−1 ≡ 1 (mod n).

• bj ̸≡ 1 (mod n) but bj+1 = (bj)2 ≡ 1 (mod n).
Hence, bj ≡ −1 (mod n)

We obtain that the test returns “n is probably prime”.

Algorithm 6.1. The Rabin-Miller primality test

Input: an odd number n ∈ N
a security parameter k

Compute t, w such that n− 1 = 2tw with w odd
for k times do

Choose a ∈ {1, . . . , n− 1} at random
Compute bi := a2iw (mod n) for i = 0, . . . , t
if bt = an−1 ̸≡ 1 (mod n) then output “n is composite”
Determine j := max{i : bi ̸≡ 1 (mod n)}
if bj ̸≡ −1 (mod n) then output “n is composite”

endfor
output “n probably prime”
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As for Proposition (iii), let Mn be the set of all a ∈ {1, . . . , n− 1}
such that the choice of a by the Rabin-Miller test with input n does not
lead to the result “n is composed”. It obviously suffices to show that
|Mn| ≤ (n− 1)/2 for all composed, odd n. The probability to obtain
only elements a ∈ Mn when choosing k times some random a is smaller
than 2−k.

We see that Mn ⊆ Z∗
n. If indeed a ∈ Mn then an−1 ≡ 1 (mod n)

and, hence, an−2a + rn = 1 for a suitable r ∈ Z. If a and n had a
common divisor q > 1, it would also be a divisor of the sum an−2a + rn
which is impossible since it is equal to 1. Therefore, a and n are co-prime
and thus a ∈ Z∗

n. Hence, it suffices to show the following.

Claim 6.7. There is a proper subgroup Un < Z∗n which contains Mn.

From this, we obtain |Mn| ≤ |Un| ≤ |Z∗
n|/2 ≤ (n− 1)/2.

For composed non-Carmichael numbers n, the claim follows di-
rectly from Lemma 6.4 since Mn ⊆ Fn. For Carmichael numbers, we
first show that these are not powers of primes, i.e., every Carmichael
number n can be written as the product of two co-prime odd numbers
n1, n2. Fix such an n = n1 · n2.

For every a ∈ Mn, the sequence b0, . . . , bt (with bi = a2iw (mod n))
has the form

∗ ∗ ∗ · · · ∗ −1 1 1 · · · 1 or 1 1 · · · 1.

Set

h := max{i : 0 ≤ i ≤ t, there is an a ∈ Z∗n with a2iw ≡ −1 (mod n)}.

Such an h exists since, for example, (−1)20w = −1. Let now

Un := {a ∈ Z∗
n : a2hw ≡ ±1 (mod n)}.

Obviously, Un is a subgroup of Z∗n containing Mn. We now show
that Un ( Z∗n as follows: Let b ∈ Z∗n such that b2hw ≡ −1 (mod n). By
the Chinese Remainder Theorem, there is an a ∈ Z∗

n such that

(1) a ≡ b (mod n1), and

(2) a ≡ 1 (mod n2).

71



6.2 Probabilistic complexity classes and Turing machines

We show that a ̸∈ Un by leading the claim a ∈ Un to a contradiction.
At first, let us consider a ∈ Un since a2hw ≡ 1 (mod n). Then,

also a2hw ≡ 1 (mod n1). However, because of (1) a2hw ≡ b2hw ≡ −1
(mod n1) holds, which is impossible since n1 > 2.

The other possibility is that a ∈ Un since a2hw ≡ −1 (mod n).
Then, a2hw ≡ −1 (mod n2). However, because of (2) a2hw ≡ 1
(mod n2), which is impossible since n2 > 2. q.e.d.

Miller showed that, under the assumption of the Extended Rie-
mann Hypothesis (ERH), this test yields a deterministic polynomial-time
algorithm witnessing primes ∈ P.

Theorem 6.8 (Miller). The ERH implies that there is a function f : N →
N such that f (n) is bounded by a polynomial in log n such that, for all
odd non-prime numbers n > 2, one of the following is true:

(i) n is a prime power;

(ii) there is an a < f (n) with a ̸∈ Mn, i.e., the use of a in the Rabin-
Miller test on input n leads to the result “n is composed”.

Corollary 6.9. The ERH implies primes ∈ P.

6.2 Probabilistic complexity classes and Turing machines

For m ∈ N, we consider {0, 1}m as a probability space with uniform
distribution: For every u ∈ {0, 1}m, the probability

Pry∈{0,1}m [y = u] =
1

2m .

Definition 6.10. A probabilistic Turing machine (PTM) is a Turing machine
whose input consists of a pair (x, y) ∈ Σ∗ × {0, 1}∗. Here, x ∈ Σ∗

denotes the actual input and y ∈ {0, 1}∗ a random word controlling the
computation of the machine.

A PTM M is called p(n)-time bounded if M stops after at most
p(|x|) steps on input (x, y). Without loss of generality, we can assume
that |y| = p(|x|).
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Let M be p(n)-time bounded. If we consider M as an acceptor over
Σ∗ × {0, 1}∗, we obtain the language L(M) ⊆ Σ∗ × {0, 1}∗. Hence, we
define M as a probabilistic acceptor over Σ∗. For x ∈ Σ∗ with |x| = n , we
set:

Pr[M accepts x] := Pry∈{0,1}p(n) [(x, y) ∈ L(M)]

=
|{y ∈ {0, 1}p(n) : (x, y) ∈ L(M)}|

2p(n)
.

Lemma 6.11. A language A ⊆ Σ∗ is in NP if and only if there is a
polynomial PTM M such that A = {x ∈ Σ∗ : Pr[M accepts x] > 0}.

Proof. Consider A ∈ NP. Then, there is a B ∈ P and a polynomial p(n)
such that A = {x ∈ Σ∗ : ∃y (|y| ≤ p(|x|) ∧ (x, y) ∈ B}. It is not
difficult to modify B and p(n) in a way that A = {x ∈ Σ∗ : (∃y ∈
{0, 1}p(|x|) (x, y) ∈ B}. Let M be a polynomial, deterministic TM over
Σ∗ × {0, 1}∗ with L(M) = B. If we consider M as a probabilistic TM
over Σ∗, we obtain:

A = {x ∈ Σ∗ : Pry∈{0,1}p(n) [(x, y) ∈ L(M)] > 0}
= {x ∈ Σ∗ : Pr[M accepts x] > 0}.

Consider now A = {x ∈ Σ∗ : Pr[M accepts x] > 0} for
a polynomial PTM M. Hence, for some suitable polynomial p,
A = {x ∈ Σ∗ : Pry∈{0,1}p(n) [(x, y) ∈ L(M)] > 0}. Then, B :=

{(x, y) ∈ Σ∗ × {0, 1}p(|x|) : (x, y) ∈ L(M)} in P and therefore,
A = {x ∈ Σ∗ : ∃y (|y| ≤ p(|x|) ∧ (x, y) ∈ B} in NP. q.e.d.

The probability to find a suitable witness y for an NP problem on
input x simply by guessing can be very small. “Good” probabilistic
algorithms are successful in guessing, i.e., they guess suitable witnesses
with a high probability. We call a probabilistic algorithm for A stable,
if Pr[M accepts x] for x ∈ A is significantly larger than Pr[M accepts x]
for x ̸∈ A.
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Definition 6.12. Consider a language A ⊆ Σ∗.

• A ∈ PP (probabilistic polynomial time), if there is a polynomial
PTM M such that

A = {x : Pr[M accepts x] >
1
2
}.

• A ∈ BPP (bounded error probabilistic polynomial time), if there is
a polynomial PTM M such that

x ∈ A =⇒ Pr[M accepts x] ≥ 2
3

and

x ̸∈ A =⇒ Pr[M accepts x] ≤ 1
3

.

Probabilistic algorithms are subject to two kinds of error probabili-
ties:

(1) Incorrect positive: x ̸∈ A but Pr[M accepts x] > 0.
(2) Incorrect negative: x ∈ A but Pr[M accepts x] < 1, i.e.,

Pr[M does not accept x] = 1− Pr[M accepts x] > 0.

We obtain the following picture for the complexity classes defined
so far:

BPP: both error probabilities ≤ 1
3 ,

PP: only the trivial bound, error probability ≤ 1
2 , that can

be obtained by tossing a coin,

NP: no incorrect positive error, but Pr[M accepts x] for
x ∈ A ⊆ NP can be arbitrarily small.

Definition 6.13. In addition to PP and BPP, the notion of error proba-
bility leads us to the following probabilistic complexity classes:

• A ∈ RP (random probabilistic polynomial time), if there is a poly-
nomial PTM M such that

x ∈ A =⇒ Pr[M accepts x] ≥ 2
3 and

x ̸∈ A =⇒ Pr[M accepts x] = 0.

(no incorrect positive results).
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• A ∈ Co-RP :⇐⇒ A ∈ RP, i.e., there is a polynomial PTM M such
that

x ∈ A =⇒ Pr[M accepts x] = 1 and

x ̸∈ A =⇒ Pr[M accepts x] ≤ 1
3 .

(no incorrect negative results).
• A ∈ ZPP (zero-error probabilistic polynomial time), if A ∈ RP and

A ∈ Co-RP.

For the interpretation of ZPP, we consider a language A ∈ ZPP.
Then, there are polynomial PTM M+ and M− for A ∈ RP and A ∈ RP.
Consider now a PTM M that simulates the computations of M+ and
M− in parallel and accepts the input if M+ accepts it and rejects if
M− accepts it. In the case that M+ rejects and M− accepts, M returns
"‘don’t know"’. Obviously, M is working error-free, i.e., the answers are
always correct. It does, however, return an unsatisfying result with a
probability of ε ≤ 1/3. By repeating with independent random inputs,
ε can be made arbitrarily small.

Example 6.14. The Rabin-Miller primality test (RM) shows that primes ∈
coRP. In 1987, Adleman and Huang have shown (the much more
difficult result) that primes is also in RP. Hence, primes ∈ ZPP.

Obviously, the following inclusions hold:

RP

⊆ ⊆

P ⊆ ZPP BPP ⊆ PP

⊆ ⊆

Co-RP

Furthermore, RP ⊆ NP, Co-RP ⊆ Co-NP and ZPP ⊆ NP∩Co-NP.

Theorem 6.15. NP ⊆ PP ⊆ Pspace.

Proof. Consider A ∈ NP. By Lemma 6.11, there is a PTM M with
A = {x ∈ Σ∗ : Pr[M accepts x] > 0}. Let M′ be a PTM accepting
(x, y0y1y2 . . . ) if, and only if, either y0 = 1 or M accepts (x, y1y2 . . . ).
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Then,

Pr[M′ accepts x] =
1
2

+
1
2

Pr[M accepts x],

and we obtain A = {x : Pr[M′ accepts x] > 1
2} ∈ PP.

On the other hand, consider A ∈ PP. Then,

x ∈ A ⇐⇒ Pr[M accepts x] = Pry∈{0,1}p(n) [(x, y) ∈ L(M)] >
1
2

.

Therefore, for some given input x, all computations of M on input
(x, y) with y ∈ {0, 1}p(n) can be simulated using polynomial space to
determine whether more than 2p(n)−1 of the pairs (x, y) are accepted.

q.e.d.

Note that the relation between BPP and NP remains unclear.

In the following, we introduce a method to reduce the error prob-
ability of a BPP algorithm. Here, the fundamental idea is to use k
iterations and then to decide for the most frequent result obtained.

Let M be a p(n)-time bounded PTM with an error probability
≤ ε < 1

2 . Let Mk be a PTM accepting (x, y1y2 . . . yk) with yi ∈ {0, 1}p(n)

if and only if |{i : (x, yi) ∈ L(M)}| ≥ k/2. The algorithm Mk is
polynomial if k = k(n) is polynomial in n.

To compute the error probability of Mk, we need a result from
probability theory.

Let X1, . . . , Xk be random variables over {0, 1} with Pr[Xi = 1] = p
and Pr[Xi = 0] = 1− p for 0 < p < 1 (Bernoulli random variables). The
sum X = ∑k

i=1 Xi is a binomially distributed random variable over N.
Its expectation is E(X) = p · k. The following lemma gives a probability
estimate for the case that the value of X differs less than d from the
expectation:

Lemma 6.16 (Chernoff). For d ≥ 0,

Pr[X− pk ≥ d] ≤ e−
d2

4kp(1−p) ≤ e−
−d2

k and Pr[pk−X ≥ d] ≤ e−
−d2

k .

Coming back to our original problem, for ȳ = y1 . . . yk (with yi ∈
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{0, 1}p(n)), we define the random variables

Xi(ȳ) :=

1 if (x, yi) ∈ L(M),

0 otherwise.

Let A be a language that is decided by a BPP algorithm M with an
error probability ≤ ε < 1

2 . Then,

(1) For x ̸∈ A, p := Pr[Xi = 1] ≤ ε. With X := ∑k
i=1 Xi,

Pr[Mk accepts x] = Pr[X ≥ k
2
].

Applying Chernoff’s Lemma, we obtain

Pr[X ≥ k/2] = Pr[X− pk ≥ k/2− pk] ≤ e−( 1
2−p)2k = 2−Ω(k).

Let q(n) be a suitable polynomial. For k ≥ c · q(n) (c is a suit-
able constant), we obtain an incorrect positive error probability
≤ 2−q(n).
An analogous statement holds for incorrect positive error probabil-
ity:

(2) For x ∈ A, Pr[M accepts x] = Pr[Xi = 1] = p ≥ 1− ε and

Pr[Mk does not accept x] = Pr
[

X <
k
2

]
= Pr

[
pk− X ≥ (p− 1

2
)k
]

≤ e−(p− 1
2 )2k = 2−Ω(k).

Hence, we have shown:

Theorem 6.17. For every language A ∈ BPP and every polynomial q(n),
there is a polynomial PTM M accepting A with an error probability
≤ 2−q(n), i.e.,

x ∈ A =⇒ Pr[Mk accepts x] ≥ 1− 2−q(|x|),

x ̸∈ A =⇒ Pr[Mk accepts x] ≤ 2−q(|x|).
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An analogous statement also holds for the class RP.

From Theorem 6.17, we obtain an interesting result concerning the
relationship between BPP and circuit complexity.

Let M be some BPP algorithm for A with an error probability of
≤ 2−q(n). For all x,

|{y ∈ {0, 1}p(n) : (x, y) ∈ L(M) ⇐⇒ x ∈ A}|
2p(n)

≥ 1− 2−q(n).

It follows that for every fixed input length n, there are random values
y ∈ {0, 1}p(n) returning the correct result for all x ∈ Σn:

|{y ∈ {0, 1}p(n) : y “bad” for at least one x ∈ Σn}| =
∑
|x|=n

|{y ∈ {0, 1}p(n) : y “bad” for x}| ≤ |Σn| · 2−q(n) · 2p(n).

If q(n) is chosen such that limn→∞ |Σn| · 2−q(n) = 0 (e.g., q(n) = n2,
or q(n) = cn with c ≥ log |Σ|), we obtain that for large n at least one
y(n) ∈ {0, 1}p(n) gives the correct result for all x ∈ Σn;

Hence, there is a function f : N → {0, 1}∗ with the following
properties:

• f is polynomially-bounded: | f (n)| = p(n) and
• for all sufficiently long x ∈ Σ∗,

x ∈ A ⇐⇒ (x, f (x)) ∈ L(M)︸ ︷︷ ︸
polynomial

.

Definition 6.18. A ∈ Σ∗ is non-uniform polynomially-decidable (A ∈
non-uniform P) if there is a function f : N → {0, 1}∗ and a set B ∈ P
such that

• | f (n)| ≤ p(n) for a polynomial p and
• A = {x ∈ Σ∗ : (x, f (|x|)) ∈ B}.

Such a function f is called an advice function since it provides
additional information f (n) on every input length n that allows to
decide A in polynomial time. Note that f itself does not need to be
computable. The class non-uniform P is sometimes also denoted by
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P/poly, “P with polynomial advice”. This additional information f (n)
can be understood as the encoding of a polynomial circuit deciding A
on input length n. Indeed, it is easy to see that

A ∈ non-uniform P ⇐⇒ A is decided by a sequence of circuits

of polynomial size.

Corollary 6.19. BPP ⊆ non-uniform P. Therefore, all problems in BPP
are of polynomial circuit complexity.

Theorem 6.20. BPP ⊆ Σp
2 ∩Πp

2 .

Proof. It is sufficient to show that BPP ⊆ Σp
2 . Since coBPP = BPP, it

follows directly that BPP ⊆ Πp
2 .

Consider A ∈ BPP. By Theorem 6.17, there is a polynomial PTM
M deciding A with error probability < 2−n:

x ∈ A =⇒ Pry∈{0,1}p(n) [M accepts x] > 1− 2−n , and

x ̸∈ A =⇒ Pry∈{0,1}p(n) [M accepts x] < 2−n .

In particular,

x ∈ A ⇐⇒ |{y ∈ {0, 1}p(n) : (x, y) ∈ L(M)}| > 2p(n)(1− 2−n).

Fix some x, |x| = n. Let Ω = {0, 1}p(n) and B ⊆ Ω. We seek a criterion
for the property |B| > (1− 2−n)|Ω|. The idea is to cover all of Ω with
“few” images of B under translation modulo 2.

For y, z ∈ Ω, let y ⊕ z := w0 . . . wp(n)−1 ∈ Ω with wi = yi ⊕ zi

(bitwise addition modulo 2). Let B⊕ z := {y⊕ z : y ∈ B}.

Lemma 6.21. For sufficiently large n and B ∈ {0, 1}p(n) such that either

(i) |B| < 2−n · 2p(n) or
(ii) |B| > (1− 2−n) · 2p(n)

the following holds:

(ii) ⇐⇒ ∃z = (z1, . . . , zp(n)) ∈ Ωp(n) :
⋃
i

B⊕ zi = {0, 1}p(n).
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Proof. (⇒):
⋃

i B⊕ zi contains at most p(n) · |B| elements. If
⋃

i B⊕ zi

covers all of Ω, (i) is impossible since p(n) · 2−n|Ω| < |Ω| for large n.
(⇐): We use a probabilistic argument. Fix some y ∈ Ω and choose

z ∈ B⊕ y. If we assume that (ii) holds, it follows that

Pr
z∈Ω

[y ∈ B⊕ z] = Pr
z∈Ω

[z ∈ B⊕ y] = Pr
z∈Ω

[z ∈ B] > 1− 2−n.

Hence, we obtain:

Prz∈Ωn

[∧
i

y ̸∈ B⊕ zi

]
≤ ∏

i
Przi∈Ω[y ̸∈ B⊕ zi] ≤ 2−n·p(n).

Therefore, the probability that some random z ∈ Ωn does not fulfil the
conditions of the lemma can be approximated as follows:

Prz∈Ωn

[⋃
i

B⊕ zi ̸= Ω
]
≤ ∑

y∈Ω
Prz∈Ωn

[∧
i

y ̸∈ B⊕ zi

]
≤ 2p(n) · 2−n·p(n) < 1 for large n.

Hence, there must be a “good” z. q.e.d.

We can thus express A as follows: Let Bx = {y ∈ Ω : (x, y) ∈
L(M)}. Then,

x ∈ A =⇒ |Bx| > (1− 2−n) · 2p(n), and

x ̸∈ A =⇒ |Bx| < 2−n · 2p(n).

Hence,

x ∈ A ⇐⇒ ∃z ∈ Ωp(n) :
p(n)⋃
i=1

Bx ⊕ zi = Ω

⇐⇒ ∃z ∈ Ωp(n)∀y ∈ Ω
p(n)∨
i=1

y ∈ Bx ⊕ zi︸ ︷︷ ︸
≡y⊕zi∈Bx

⇐⇒ ∃z ∈ Ωp(n)∀y ∈ Ω
p(n)∨
i=1

(x, y⊕ zi) ∈ L(M)︸ ︷︷ ︸
in P

.

Therefore, A ∈ Σp
2 . q.e.d.
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6.3 Probabilistic proof systems and Arthur-Merlin games

We go back to the year 528 and turn our attention to the Court of King
Arthur. A Round Table for 150 knights needs to be prepared. King
Arthur is worried about peace at table as many knights are enemies.
A seating arrangement needs to be found that makes sure no knights
that are enemies are seated next to each other. Hence, King Arthur has
the following problem: Given a graph G = (P, E) with P = {Arthur} ∪
{K1 . . . K150}, and E = {(x, y) : x not enemy with y}; find a Hamilton
cycle of G.

Arthur is a wise man and assumes that the design of such a seating
arrangement might lead to evaluate all 150! possibilities for which
the remaining time until the Round Table would not be sufficient.
That is why he charges his magician Merlin with this task. Merlin
possesses some super-natural power and can therefore find a peaceful
arrangement if it does exist.

As most reasonable people, King Arthur does not completely rely
on magic. He therefore always double-checks all solutions that Merlin
proposes before actually implementing them. That is, once Merlin pro-
poses a seating arrangement k0, k1, . . . , k150 (let k0 be the king), Arthur
himself makes sure that for all j, (kj, kj+1) ∈ E.

However, the day comes when a new Round Table is going to
take place. Some knights have reconciled, others have become enemies.
Merlin finds out that there is no peaceful arrangement for this situation
any more. King Arthur does not want to accept this result without
proof, but a verification of all 150! possibilities is impossible.

Hence, Merlin needs to find a proof for the nonexistence of a
seating arrangement that can be verified by Arthur. Since he cannot
come up with one (as he does not know whether ham ∈ coNP), Merlin
ends up in prison. After a while, the king regrets his impatience and is
willing to accept a proof that he can verify with a probability of 1/21000.

6.3.1 Interactive proof systems

The notion of a proof can—informally speaking—be defined as an
interaction between a prover (P) and a verifier (V). After the interaction
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is completed, the verifier decides whether to accept the proof. Hence, a
proof system is a protocol defining the interaction of P and V on input x
(the theorem to prove). As opposed to proof notion from classical logic,
this approach allows interesting observations on complexity.

The class NP is characterised by the following deterministic proof
system: A language Q ⊆ Σ∗ is in NP if there are Turing computable
functions P : Σ∗ → Σ∗ and V : Σ∗ × Σ∗ → {accept, reject} with

• V polynomial in the first argument (i.e., timeV(x, y) ≤ p(|x|) for
some polynomial p).

• Completeness: for all x ∈ Σ∗, x ∈ Q =⇒ V(x, P(x)) = accept.

• Correctness: for all P′ : Σ∗ → Σ∗ and all x, we have x ̸∈ Q =⇒
V(x, P′(x)) = reject (i.e., no prover P′ can convince V of an incorrect
proposition “x ∈ Q.”)

Example 6.22. The graph isomorphism problem graphiso = {(G, H) :
G, H graphs, G ∼= H} ∈ NP. Without loss of generality, we can assume
that G = (V, EG) and H = (V, EH). Then, on an input (G, H), there is
the following proof system:

• P returns some permutation π : V → V.

• V verifies whether π : G ∼→ H.

It is unknown whether graphiso ∈ coNP, that is, whether there is
an NP proof system for graphnoniso = {(G, H) : G ̸∼= H}.

In the following, we introduce interactive proof systems that allow a
more sophisticated interaction between prover and verifier: the state-
ments made by the prover are verified probabilistically in polynomial
time; the verifier accepts with an error probability ε > 0.

Definition 6.23. Let Σ be an alphabet. An interactive protocol on
Σ∗ is a pair (P, V) of computable functions P : Σ∗ → Σ∗, V :
Σ∗ × Σ∗ × {0, 1}ω → Σ∗ ∪ {accept, reject} where V is polynomial in
the first argument (i.e., timeV(x, y, z) ≤ p(|x|) for some polynomial p).

The history of (P, V) on x ∈ Σ∗ with the random word y ∈ {0, 1}ω
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is a sequence U(x, y) = u0, u1, . . . with u0 = x and ui+1 = uiai where

ai :=

V(x, ui, y) if i is even,

P(ui) if i is odd and ai ̸∈ {accept, reject}.

We say (P, V) accepts x (with the random word y) if uk = accept for
some k. For every x ∈ Σ∗, the history of (P, V) is a random variable
U(x) : y 7→ U(x, y).

Definition 6.24. Consider Q ⊆ Σ∗. An interactive proof system for Q is
an interactive protocol (P, V) satisfying the following requirements:

• Completeness: for all x ∈ Σ∗,
x ∈ Q =⇒ Pr[(P, V) accepts x] > 2

3 .
• Correctness: for all P′ : Σ∗ → Σ∗ and all x,

x ̸∈ Q =⇒ Pr[(P′, V) accepts x] < 1
3 .

A round of U(x, y) is a pair (a2i, a2i+1) (hence, a “message” of P
followed by an “answer” of V). We say a protocol has ≤ q rounds if,
for all x ∈ Σ∗ and all y ∈ {0, 1}ω , the history U(x, y) has at most q(|x|)
rounds.

Definition 6.25. IP (respectively, IP[q]) is the class of all Q ⊆ Σ∗ for
which there is an interactive proof system (respectively, one with ≤ q
rounds).

Example 6.26. graphnoniso ∈ IP[2]. The proof system (P, V) works on
input (G0, G1) with Gi = (Vi, Ei) as follows:

• V chooses some index i, i′ ∈ {0, 1} at random and some permuta-
tion π, π′ : V → V. Then, he computes H = πGi, H′ = π′Gi and
sends both H and H′ to the prover. (The chosen indices i, i′, and
permutations π, π′ remain secret!)

• P replies with j, j′ ∈ {0, 1} such that H ∼= Gj, and H′ ∼= G′j .
• V accepts if i = j and i′ = j′; otherwise V rejects.

Analysis.

• If G0 ̸∼= G1, then H and H′ are isomorphic to exactly one input
graph. Thus, P can determine i and i′. It follows G0 ̸∼= G1 =⇒
Pr[(P, V) accepts (G0, G1)] = 1.
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• If G0 ∼= G1 then H and H′ are isomorphic to both graphs and all
G ∼= G0, G1 appear with equal probability. Every prover P′ can
do no better than guessing j, j′. Hence, for all P′: G0 ∼= G1 =⇒
Pr[(P, V) accepts (G0, G1)] ≤ 1

4 .

Lemma 6.27. NP ⊆ IP[1] ⊆ IP[2] ⊆ · · · ⊆ IP ⊆ Pspace.

Proof (IP ⊆ Pspace).
Let (P, V) be an interactive proof system for Q. Since V is polynomial in
the first argument, V on input (x, ui, y) reads only the first p(|x|) sym-
bols of ui and y. It is possible, using polynomial space, to simulate all
possible histories U(x, y) and to determine Pr[(P, V) accepts x]. q.e.d.

It is interesting to know where—between NP and Pspace—the
class of interactively provable languages is located. For this, we return
to Arthur and Merlin.

Definition 6.28. An Arthur-Merlin game (for a language Q) is an in-
teractive proof system for Q with the additional requirement that the
prover (Merlin) can see the random bits used by the verifier (Arthur).
Without loss of generality, the messages from Arthur to Merlin are then
composed of a sequence y1, . . . , yr (r ≤ p(|x|)) of random bits.

AM (respectively, AM[q]) is the class of all Q ⊆ Σ∗ that have an
Arthur-Merlin game (respectively, one with ≤ q(|x|) rounds).

Obviously, AM ⊆ IP , and

AM[q] ⊆ IP[q].

In the following, we see that one of the most difficult problems
from Pspace is in AM.

6.3.2 An Arthur-Merlin game for the permanent of a matrix

Definition 6.29. Let R be a ring, R′ ⊂ R some subset and A ∈ Mn(R′)
an n× n matrix over R′. The permanent of A (over R) is defined as

perR A = ∑
σ∈Sn

a1σ(1) . . . anσ(n).
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The analogy to determinants is striking:

det A = ∑
σ∈Sn

sgn(σ)a1σ(1) . . . anσ(n).

By removing the ith line and the jth column, one obtains the ij minor
Aij of A, and it follows

det A =
n

∑
i=1

(−1)i+1ai1 · Ai1 and

perA =
n

∑
i=1

ai1 · Ai1.

However, the determinant can be computed efficiently where as no
efficient algorithm is known for the permanent. It is currently assumed
that in general it is not efficiently computable. The following result
confirms this assumption.

Definition 6.30. #P is the class of all functions f : Σ∗ → N for which
there is a polynomial nondeterministic TM M such that the number of
accepting computations of M on x is exactly f (x).

Theorem 6.31 (Toda). PH ⊆ #P.

Theorem 6.32 (Valiant). The permanent (over Z) of 0-1-matrices is
#P -complete.

A polynomial algorithm to compute the permanent would therefore
imply PH = P. An interactive proof system for

per = {(A, q) : A ∈ Mn({0, 1}), perZ A = q}

hence implies that every problem Q ∈ PH has an interactive proof
system. This would in particular be true for

ham = {G : G contains no Hamilton circle } ∈ coNP ⊆ PH.

Theorem 6.33. There is an Arthur-Merlin game for per.

Proof. (1) Since A ∈ Mn({0, 1}) =⇒ 0 ≤ perZ(A) ≤ n!. Let p > n! be
a prime number. Then, perFp

(A) = perZ(A) over the field Fp.
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(2) For a field F, let F[X]d = { f ∈ F : degree f ≤ d}. If A ∈
Mn(F[X]d) then perA ∈ F[X]nd.

(3) The protocol:
Arthur and Merlin work with a list L = {(A1, q1) . . . (Ar, qr)}
where Ai ∈ Mk(Fp) and qi ∈ Fp (k ≤ n). L is correct if perAi = qi

for i = 1, . . . , r.
Beginning: L = {(A, q)}, A ∈ Mn(Fp)}.
In a sequence of subprotocols ‘expand’ and ‘reduce’, L is changed
until, at the
End: L = {(B, s)}, B ∈ M2(Fp).
Arthur accepts if, and only if, per B = s.

• if L contains only one pair: L = {(A, q)}, A ∈ Mk(Fp)}, k > 2:

Expansion step:
L 7→ L′ = {(A1, q1), . . . , (Ak, qk)} where Ai ∈ Mk−1(F)p.
Subprotocol expand(L)
Input: L = {(A, q)}
Merlin: computes qi = per(Ai1) for i = 1, . . . , k and sends

the results q1, . . . , qk to Arthur.
Arthur: verifies whether ∑k

i=1 ai1qi = q.
If not, he rejects;
otherwise, he sets L′ = {(Ai1, q1), . . . , (Ak1, qk)}.

For this step, we have

L correct =⇒ L′ correct.

L incorrect =⇒ L′ incorrect (no matter how Merlin plays).

• if |L| > 1,
Reduction step: L 7→ L′ with |L′| = |L| − 1 such that

L correct =⇒ L′ correct.

L incorrect =⇒ L′ incorrect with high probability.

Consider (A, q1), (B, q2) ∈ L, A, B ∈ Mk(Fp). Set

C(X) = (1− X)A + XB
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=


...

. . . αx + β . . .
...

 ∈ Mk(Fp[X]).

With per C(X) =: f ∈ Fp[X], we have

C(0) = A, hence f (0) = per A;

C(1) = B, hence f (1) = per A.

Remark: To verify whether per A = q1 and per B = q2, it there-
fore suffices to determine the polynomial f and to evaluate it
at 0 and 1.

Subprotocol reduce(L):
Input: {(A, q1), (B, q2)}, A, B ∈ MkFp.
Merlin: sends Arthur c0, . . . , ck ∈ Fp

(claiming that f (X) = c0 + c1X + · · ·+ ckXk).
Arthur: sets g(X) = c0 + c1X + · · ·+ ckXk, and

verifies whether g(0) = q1 and g(1) = q2.
If not, he rejects;
otherwise, he chooses a random number a ∈ Fp and
sets L′ = (L− {(A, q1), (B, q1)} ∪ {(C(a), g(a))}.

For this step, we have

L correct =⇒ Merlin can play in such a way that
L′ is correct by sending the correct co-
efficients of f , i.e., such that g(X) =
f (X) = per C(X), and in particular
g(a) = per C(a).

L incorrect =⇒ with high probability L′ incorrect.

Reason: Assume that per A = per C(0) ̸= q1. Merlin sends
incorrect coefficients since g(0) = q1 ̸= f (0) = per A. Hence,
we have
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f ̸= g =⇒ |{a : f (a) = g(a)}| ≤ k

=⇒ Pr[per C(a) = g(a)] ≤ k
p

<
1

(n− 1)!

for p > n!, and k ≤ n.

Hence, we obtain the Arthur-Merlin game described in Algorithm 6.2.
Analysis.

(a) The game is indeed an Arthur-Merlin protocol, i.e., all computa-
tions by Arthur are in P since

• p < 2n!, |p| = O(n log n) since n! = 2O(n log n),

• the arithmetical operations in Fp are polynomial in |p| and

• the protocol uses n − 2 expansion steps and ∑n−2
i=2 (i − 1) =

(n−1)(n−2)
2 reduction steps.

(b) (A, q) ∈ per =⇒ Pr[(M, A) accepts (A, q)] = 1.

Algorithm 6.2. Arthur-Merlin game for per

Input: (A, q), A ∈ Mn({0, 1}), q ∈ N

Merlin:
sends Arthur a prime number p ∈ [n!, 2n!] together with a short
proof showing that p is primea.

Arthur:
verifies that p is indeed a prime number between n! and 2n!.
if p not prime then reject

/* For the remainder of the protocol, all calculations are
done in Fp. */

L := {(A, q)}
while L ̸= {(B, s)} for a B ∈ M2(Fp) do

if |L| = 1 then expand(L) else reduce(L)
endwhile
Arthur:

verifies whether per B = s.
if yes then accept else reject

a It is known that for all a ∈ N there is a prime number between a and 2a (Bertrand’s
postulat). Since primes ∈ NP, there are short proofs for the fact that p is prime (i.e., there is
an L ∈ P with primes = {p : ∃w|w| ≤ |p|k : (p, w) ∈ L} (where w is a short proof).
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(c) Let (A, q) ̸∈ per and M′ some prover. Then, (M′, A) accepts
(A, q) =⇒ M′ has cheated successfully in at least one reduction
step. This can occur in one single reduction step with a probability
of at most 1

(n−1)! . Altogether, we obtain

Pr[(M′A) accepts (A, q)] < 1−
(

1− 1
(n− 1)!

) (n−1)(n−2)
2

<
(n− 1)(n− 2)

(n− 1)!
=

1
(n− 3)!

. q.e.d.

In 1992, this theorem was published by Lund, Fortnow, Karloff and
Nisan in JACM 39(4).

6.3.3 IP = Pspace

Only one month after Lund, Fortnow, Karloff and Nisan, Shamir showed
that IP = Pspace. In order to do so, he constructed an interactive proof
system (even an Arthur-Merlin game) for qbf. qbf is the problem to
evaluate quantified Boolean formulae, and it is Pspace-complete. An
Arthur-Merlin game for this problem therefore suffices to show that
all Q ∈ Pspace have an interactive proof system (and even an Arthur-
Merlin game). At the same time it shows that Arthur-Merlin games are
equally strong as interactive proof systems.

Theorem 6.34 (Shamir). There is an Arthur-Merlin game for qbf.

Proof (Simplified version).

(1) Arithmetisation of a formula from quantified propositional logic.
First, let ϕ(X1, . . . , Xn) be a propositional formula (without quan-
tifiers) and let F be some arbitrary field. A map ϕ 7→ Fϕ ∈
F[X1, . . . , Xn] is defined inductively as follows:

FXi = Xi,

Fα∧β = Fα · Fβ,

F¬α = 1− Fα,

Fα∨β = Fα ◦ Fβ := Fα + Fβ − FαFβ.
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Let I : {X1, . . . , Xn} 7→ {0, 1} be an interpretation with I(X1) =
ε1, . . . , ε(Xn) = εn. We write ϕ(ε1, . . . , εn) for I(ϕ). For every field
F and all ε1, . . . , εn ∈ {0, 1}, Fϕ(ε1, . . . , εn) = ϕ(ε1, . . . , εn).
For f ∈ F[Y, X], we define the following:

(∀Y f )(X) = f (0, X) · f (1, X) ∈ F[X],

(∃Y f )(X) = f (0, X) ◦ f (1, X) ∈ F[X],

(RY f )(X) = f (mod Y2 −Y) ∈ F[Y, X].

(all Yi with i > 0 are replaced by Y)

Hence, we obtain the following arithmetisation of quantified propo-
sitional formulae with quantifiers:

F∀Yϕ = (∀YFϕ),

F∃Yϕ = (∃YFϕ).

Obviously, for all quantified propositional formulae Ψ(X1, . . . , Xk),
we have FΨ(ε1, . . . , εk) = Ψ(ε1, . . . , εk). In particular if free(Ψ) = ∅,
Ψ ∈ qbf ⇐⇒ FΨ = 1 holds.
However, we have the following problem: The explicit construction
of FΨ is just as difficult as the evaluation of the QBF formula Ψ.
Length and degree of the polynomial FΨ can become arbitrarily
large since every application of the quantifiers ∀ and ∃ double both
the length and degree.

(2) Degree reduction using R.
For u ∈ {0, 1}, we have (RY f )(u, X) = f (u, X). Further, for f ∈
F[X1, . . . , Xn] set

(R∗ f )(X1, . . . Xn) = (RX1RX2 . . . RXn f )(X1, . . . , Xn).

For ε1, . . . εn ∈ {0, 1},

• (R∗ f )(ε1, . . . εn) = f (ε1, . . . εn), and

• degree(R∗ f ) ≤ n.

Let Ψ = Q1X1 . . . QnXn ϕ(X1, . . . , Xn) be a quantified Boolean
formula with free(Ψ) = ∅. Then, Ψ ∈ qbf if, and only if,
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(Q1X1R∗Q2X2 . . . R∗QnXnR∗Fϕ) = 1 since the R∗ operator leaves
the functional values invariant for the arguments 0,1.

(3) Arthur-Merlin game.
Let f ∈ F[X1, . . . , Xn], F be finite. We assume there is an Arthur-
Merlin game with (M, A) f for {(u, v) ∈ Fn+1 : f (u) = v} with

(i) f (u = v) =⇒ Pr[M accepts (u, v)] = 1,

(ii) f (u ̸= v) =⇒ Pr[M′ accepts (u, v)] < ε for all M′.

Let g ∈ {(∃Xi f ), (∀Xi f ), (RXi f ) : i = 1, . . . , n}. We assume
Arthur knows a d with degree g ≤ d.
Based on these assumptions, we construct an Arthur-Merlin game
(M, A)g that calls (M, A) f exactly once as subprotocol with

(i) f (u = v) =⇒ Pr[M accepts (u, v)] = 1,

(ii) f (u ̸= v) =⇒ Pr[M′ accepts (u, v)] < ε + d
|F| for all M′.

We obtain the following different cases:

(a) g(X) = (∀Y f )(Y, X).
Merlin wants to show that g(u) = v. He sends the coefficients
of a polynomial s(Y) (requiring that s(Y) = f (Y, u)). If degree
s > d or s(0) · s(1) ̸= v, Arthur rejects. Otherwise, Arthur
chooses some random w ∈ F. Merlin now needs to convince
Arthur with the protocol (M, A) f that f (w, u) = s(w).

(b) g(X) = (∃Y f )(Y, X).
Analogously, with s(0) ◦ s(1) instead of s(0) · s(1).

(c) g(Y, X) = (RY f )(Y, X).

We use

Lemma 6.35. (RY f )(Y, X) = f (0, X) + [ f (1, X)− f (0, X)] ·Y.

Proof. Let f = ∑m
i=0 Yi · gi(X). Then,

f (0, X) = g0(X) and f (1, X) =
m

∑
i=0

gi(X).

Hence, we obtain (RY f ) = g0(X) + ∑m
i=0 gi(X) = f (0, X) +

[ f (1, X)− f (0, X)] ·Y. q.e.d.
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Merlin wants to convince Arthur that g(z, u) = v. He sends
Arthur the coefficients of a polynomial s(Y) (requiring that
s(Y) = f (Y, u)). If degree s > d or s(0) + z(s(1)− s(0)) ̸= v,
Arthur rejects. Otherwise, he sends Merlin some random
w ∈ F. Merlin now needs to convince Arthur with the protocol
(M, A) f that f (w, u) = s(w).

The game described above fulfils the completeness requirement.
As for correctness, we note that M′ has the following possibilities
to cheat successfully:

• In (M, A) f (with probability ε).
• If s(Y) ̸= f (Y, u) correspond at a randomly selected point w

(probability ≤ d
F ).

(4) Summary.
Given Ψ = Q1X1 . . . QnXn ϕ. Merlin convinces Arthur that

GΨ = Q1X1R∗ . . . R∗QnXnR∗Fϕ = 1

with the help of the above-mentioned reduction steps. At the
end, an equation Fϕ(u1, . . . , un) = v needs to be verified. For a
propositional formula ϕ, this is possible in polynomial time.
The error probability of the complete protocol is at most

#∃, ∀, R-operators · maximal degree
|F| =

O(n2) + O(|ϕ|2
|F| .

Therefore, it suffices to choose a field Fp with p ≥ c · |ϕ|4. q.e.d.
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