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6 Complexity Theory for Probabilistic
Algorithms

Probabilistic algorithms are algorithms that can, at certain points during
their computation, choose one possibility for the next operation at
random from a number of different possibilities. They can thus be seen
as a modification of nondeterministic algorithms. The computation
result of such an algorithm therefore is not a definite answer but a
random variable: it depends on the decisions made “at random” during
the computation. Please note that this has nothing to do with an
assumption on the distribution of possible inputs. The probability does
not concern the inputs but rather the decisions during the computation.

Probabilistic algorithms play an important role in many different
areas. They are often simpler and more efficient than the best known
deterministic algorithms for the same problem. Even more, some
important areas such as algorithmic number theory or cryptology are
inconceivable without probabilistic algorithms. We will look at two
examples.

6.1 Examples of probabilistic algorithms

6.1.1 Perfect matching and symbolic determinants

We first recall the definition of the marriage problem. Given is a bipartite
graph G = (U, V, E) with two disjoint sets of nodes U = {u1, . . . , un}
and V = {v1, . . . , vn} of the same size and a set of edges E ⊆ U × V.
The problem is to determine whether G permits a perfect matching, i.e., a
subset M ⊆ E such that for all u ∈ U there is a v ∈ V and for all v ∈ V
there is a u ∈ U such that (u, v) ∈ M. We can rephrase the problem
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6.1 Examples of probabilistic algorithms

like this: Is there a permutation π ∈ Sn so that (ui, vπ(i)) ∈ E for all
i ∈ {1, . . . , n}?

The marriage problem can further be described as a problem over
matrices and determinants. The graph G = (U, V, E) is then charac-
terised by a matrix AG whose items are variables xij or 0.

AG := (zij)1≤i,j≤n with zij :=

xij if (ui, vj) ∈ E

0 otherwise.

The determinant of AG is det AG := ∑π∈Sn
sgn(π) ∏n

i=1 ziπ(i)
where sgn(π) = 1 if π is the product of an even number of transposi-
tions and sgn(π) = −1 otherwise. Obviously, det AG is a polynomial in
Z[x11, . . . , xnn] (i.e., a polynomial with coefficients in Z) of total degree
n that is linear in every variable xij.

A permutation π ∈ Sn defines a perfect matching if and only if

∏n
i=1 zij ̸= 0. Since all of these products are pairwise different, we

obtain

G allows a perfect matching ⇐⇒ det AG ̸= 0.

Hence, if we were able to compute symbolic determinants (i.e.,
determinants of matrices that can contain variables) efficiently, we
could use this to solve the marriage problem.

Determinants using Gauss elimination. We know from linear alge-
bra how to compute determinants from numerical matrices: the given
matrix is transformed (e.g., by interchanging lines or by adding linear
combinations of lines to other lines) into a triangular matrix that has
the same determinant. The products of the diagonal elements are then
calculated to obtain the determinant. This requires O(n3) arithmetical
operations. Further, the entries of the transformed matrices remain
polynomially-bounded since they are subdeterminants of the given
matrix.

Unfortunately, the application of this procedure to symbolic matri-
ces is problematic. The entries of the transformed matrices are rational
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functions in the entries of the original matrix and these functions gen-
erally have exponentially many terms. Even the problem whether a
fixed mononom, e.g., x11x23x31, appears in the determinant of AG is
NP-hard. Hence, Gauss elimination does not seem to be useful to
calculate symbolic determinants.

However, we do not need to compute the determinant of AG. It
suffices to know whether it is 0 or not. The idea for the probabilistic
algorithm solving the perfect matching problem is to substitute a tuple
ā = (a11, . . . , ann) of random numbers into the matrix AG and then to
calculate the determinant of the numerical matrix AG(ā) using Gauss
elimination.

If we obtain that det AG(ā) ̸= 0 then the symbolic determinant
det AG is obviously not 0. The inverse does not hold: It might be the
case that we incidentally find a root ā of det AG and, hence, obtain
det AG ̸= 0.

The following lemma allows us to control the probability to ob-
tain the roots of a non-identically disappearing polynomial det AG by
finding a suitable set to choose ā from.

Lemma 6.1. Let p(x1, . . . , xn) be a polynomial such that p ̸= 0 and
every xi is at most of degree d in p. Then, for every m ∈ N,

|{(a1, . . . , an) ∈ {0, . . . , m− 1}n : p(a1, . . . , an) = 0}| ≤ ndmn−1.

Proof. We will use induction over n. For n = 1, the induction hypothesis
is a known fact: no polynomial p ̸= 0 with one variable of degree d has
more than d roots. Further, consider n > 1. We write p(x1, . . . , xn) as a
polynomial in xn with coefficients from Z[x1, . . . , xn−1]:

p(x1, . . . , xn) = p0(x1, . . . , xn−1) + p1(x1, . . . , xn−1)xn

+ · · ·+ pd(x1, . . . , xn−1)xd
n.

Let now p(a1, . . . , an) = 0 for (a1, . . . , an) ∈ {0, . . . , m− 1}n. We
consider two cases:

(a) pd(a1, . . . , an−1) = 0. By induction hypothesis, this is the case for at
most (n− 1)dmn−2 tuples (a1, . . . , an−1) ∈ {0, . . . , m− 1}n−1. Thus,
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there are at most (n− 1)dmn−1 roots (a1, . . . , an) ∈ {0, . . . , m− 1}n

of p with pd(a1, . . . , an−1) = 0.
(b) pd(a1, . . . , an−1) ̸= 0. Then, p(a1, . . . , an−1, xn) is a polynomial of

degree d in variables xn, for which there are at most d roots an. In
addition to the roots in case (a), there are, hence, at most dmn−1

new roots.

Hence, we have at most ndmn−1 roots (a1, . . . , an) ∈ {0, . . . , m − 1}n.
q.e.d.

Consequently, we obtain a probabilistic algorithm for the perfect
matching problem.

Input: a matrix AG for a bipartite graph G = (U, V, E), |U| = |V| = n
a security parameter k ∈ N

Set m := 2n2

for i = 1, . . . , k do
Choose at random numbers a11, . . . , ann ∈ {0, . . . , m− 1}
Compute det AG(ā) using Gauss elimination
if det AG(ā) ̸= 0 then output ‘There is a perfect matching’

endfor
output ‘There is probably no perfect matching’

Since the computation of numerical determinants can be done in
polynomial-time using Gauss elimination, this is also a polynomial-time
algorithm. If the algorithm finds a tuple ā such that det AG ̸= 0, it will
return ‘There is a perfect matching’ and this is correct. If it does not find
such a ā after k iterations, it will return ‘There is probably no perfect
matching’. This, however, is not always correct. The error probability,
i.e., the probability that the algorithm does not find a non-root for a
non-disappearing polynomial det AG, can be estimated using the above
lemma.

Since det AG is linear in each of the n2 variables, the ratio of tuples
ā ∈ {0, . . . , m− 1}n2

that are roots of det AG is at most

n2dmn2−1

mn2 =
n2d
m

=
n2

2n2 =
1
2

.
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The probability to find only such tuples in k iterations is at most
2−k. Please note this is not a probability statement with respect to
bipartite graphs or symbolic determinants. It is indeed a statement
on the error probability of a probabilistic algorithm with respect to its
random decisions and is valid for all bipartite graphs.

6.1.2 A probabilistic prime number test

Two central problems of algorithmic number theory are the existence of
polynomial algorithms for

(1) Primality testing: given an integer n ∈ N, determine whether it is
prime;

(2) Factoring: given an integer n ∈ N, calculate its factorisation (its
prime factors).

Primality testing has a long history going back to ancient Greece.
The first systematic approach, the Sieve of Eratosthenes, where multiples
of primes are successively removed from a list of numbers leaving
only the primes, dates back to around 240 BC. While being based
on multiplication only, this approach yields an algorithm that is still
exponential in the size of the input like the naïve approach.

Obviously, primes ∈ coNP since each non-trivial factor is a polyno-
mial witness for compositeness. In 1974, Pratt could prove membership
in NP with some more effort.

A year later, Miller presented a deterministic polynomial-time
algorithm based on Fermat’s Little Theorem, but its correctness depends
on the assumption of the Extended Riemann Hypothesis. In 1980,
Rabin modified this test and obtained an unconditional but randomised
polynomial-time algorithm, thus placing the problem in coRP. Later,
in 1987, Adleman and Huang proved the quite involved result that
primes ∈ RP, and hence in ZPP.

Only recently, Agrawal, Kayal and Saxena presented a deterministic
polynomial-time algorithm based on a generalisation of Fermat’s Little
Theorem. The first version of their algorithm had a running-time
in O(n12), which could be improved to O(n7.5), and lately to O(n6).
Depending on some number-theoretic hypotheses, the running time
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might be further improved to O(n3). For details see [Agrawal, Kayal,
Saxena. primes is in P. Annals of Mathematics 160 (2004)].

However, the currently long running-time renders this algorithm
practically unusable since it is outperformed by the simple and efficient
probabilistic methods which are able to determine with an almost
arbitrarily high probability whether a given number is prime.

Unfortunately, neither of these methods can be used to efficiently
obtain a factorisation for composite numbers. In fact, it is widely as-
sumed that the factorisation of integers is difficult in practice, and many
modern public-key cryptology systems are based on this assumption.

In the following we will present the randomised primality test due
to Rabin and Miller which is based on Fermat’s Little Theorem.

Definition 6.2. For n ∈ N, let

Z∗
n := {a ∈ {1, . . . , n− 1} : gcd(a, n) = 1}.

Note that (Z∗
n, · (mod n)) is a group.

Theorem 6.3 (Fermat). Let p be prime. Then, for all a ∈ Z∗
p,

ap−1 ≡ 1 (mod p) .

Proof. Let f (p, a) be the number of different non-periodic colourings of
cycles of length p with a colours. Since p is prime and the period must
be a divisor of p for every periodic colouring, only periods of length 1
are possible, that is, only monochrome colourings. The number of
colourings of p nodes with a colours is ap, the number of monochrome
colourings is a and, hence, f (p, a) = (ap − a)/p = a(ap−1 − 1)/p.
We obtain that p is a divisor of ap−1 − 1 and therefore, ap−1 ≡ p
(mod p). q.e.d.

One might hope that also the inverse holds, i.e., for every composed
number n, there is an a ∈ Z∗

n such that an−1 ̸≡ 1 (mod n). If one could
show furthermore that there are “many” a ∈ Z∗

n with this property,
a prime number test could work as follows: Given some n, it would
choose an a ∈ Z∗

n at random. Then, it would check whether an−1 ≡ 1
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(mod n). For this approach to work, we need to be able to verify
whether an−1 ̸≡ 1 (mod n) in polynomial time (with respect to the
length of the input, i.e., log n). This can be done by repeating the square
operation modulo n: For k = ⌊log n⌋, compute the numbers b0, . . . , bk

with b0 := a, bi+1 := (bi)2 (mod n), i.e., bi = a2i
(mod n). Let n− 1 =

∑i=1 ui2i be the binary representation of n− 1, with ui ∈ {0, 1}. Then,

an−1 = a∑i ui2i
= ∏

i
aui2i ≡ ∏

ui=1
bi (mod n).

Unfortunately, the Fermat test in this simple form fails. This is
because the inversion of Fermat’s Little Theorem is incorrect. There are
(even infinitely many) composites n ∈ N such that an−1 ≡ 1 (mod n)
for all a ∈ Z∗

n. These numbers are called Carmichael numbers. The first
Carmichael numbers are 561 and 1729.

The idea works, however, for every non-Carmichael number. For
n ∈ N, let

Fn := {a ∈ Z∗
n : an−1 ≡ 1 (mod n)}.

Lemma 6.4. If n is composite and not a Carmichael number, then
|Fn| ≤ |Z∗n|/2.

Proof. It is easy to see that (Fn, · (mod n)) is a subgroup of (Z∗
n, ·

(mod n)). Since n is neither prime nor a Carmichael number, Fn ( Z∗n.
The order of a subgroup is always a divisor of the order of the group,
i.e., |Z∗

n| = q|Fn| for some q ≥ 2. q.e.d.

Hence, the fact that our original idea for a prime number test
does not work is simply due to the Carmichael numbers. It is, however,
possible to refine the Fermat test and treat Carmichael numbers properly.
There are two variants of such probabilistic primality tests, the Solovay-
Strassen test and the Rabin-Miller test, which will be described in the
following. It is based on the following observation.

Lemma 6.5. Let p be prime. Then, for all a ∈ Z∗
p if a2 ≡ 1 (mod p),

then a ≡ ±1 (mod p).
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Proof. If p is prime, then (Z∗
p, + (mod n), · (mod n)) is a field and

fields have only the trivial roots 1 and −1. q.e.d.

Theorem 6.6.

(i) The Rabin-Miller primality test (Algorithm 6.1) can be performed
in polynomial-time (with respect to log n).

(ii) If n is prime, the test always returns “n is probably prime”.

(iii) If n is composite, the test returns “n is composite” with a probabil-
ity of ≥ 1− 2−k.

Hence, the result “n is composed” is always correct, and the answer
“n is probably prime” means that n is indeed prime with a very high
probability.

Proof. Proposition (i) is obviously correct. Proposition (ii) results from
Theorem 6.3 and Lemma 6.5. If n is prime, then for all a used in the
test:

• an−1 ≡ 1 (mod n).

• bj ̸≡ 1 (mod n) but bj+1 = (bj)2 ≡ 1 (mod n).
Hence, bj ≡ −1 (mod n)

We obtain that the test returns “n is probably prime”.

Algorithm 6.1. The Rabin-Miller primality test

Input: an odd number n ∈ N
a security parameter k

Compute t, w such that n− 1 = 2tw with w odd
for k times do

Choose a ∈ {1, . . . , n− 1} at random
Compute bi := a2iw (mod n) for i = 0, . . . , t
if bt = an−1 ̸≡ 1 (mod n) then output “n is composite”
Determine j := max{i : bi ̸≡ 1 (mod n)}
if bj ̸≡ −1 (mod n) then output “n is composite”

endfor
output “n probably prime”
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As for Proposition (iii), let Mn be the set of all a ∈ {1, . . . , n− 1}
such that the choice of a by the Rabin-Miller test with input n does not
lead to the result “n is composed”. It obviously suffices to show that
|Mn| ≤ (n− 1)/2 for all composed, odd n. The probability to obtain
only elements a ∈ Mn when choosing k times some random a is smaller
than 2−k.

We see that Mn ⊆ Z∗
n. If indeed a ∈ Mn then an−1 ≡ 1 (mod n)

and, hence, an−2a + rn = 1 for a suitable r ∈ Z. If a and n had a
common divisor q > 1, it would also be a divisor of the sum an−2a + rn
which is impossible since it is equal to 1. Therefore, a and n are co-prime
and thus a ∈ Z∗

n. Hence, it suffices to show the following.

Claim 6.7. There is a proper subgroup Un < Z∗n which contains Mn.

From this, we obtain |Mn| ≤ |Un| ≤ |Z∗
n|/2 ≤ (n− 1)/2.

For composed non-Carmichael numbers n, the claim follows di-
rectly from Lemma 6.4 since Mn ⊆ Fn. For Carmichael numbers, we
first show that these are not powers of primes, i.e., every Carmichael
number n can be written as the product of two co-prime odd numbers
n1, n2. Fix such an n = n1 · n2.

For every a ∈ Mn, the sequence b0, . . . , bt (with bi = a2iw (mod n))
has the form

∗ ∗ ∗ · · · ∗ −1 1 1 · · · 1 or 1 1 · · · 1.

Set

h := max{i : 0 ≤ i ≤ t, there is an a ∈ Z∗n with a2iw ≡ −1 (mod n)}.

Such an h exists since, for example, (−1)20w = −1. Let now

Un := {a ∈ Z∗
n : a2hw ≡ ±1 (mod n)}.

Obviously, Un is a subgroup of Z∗n containing Mn. We now show
that Un ( Z∗n as follows: Let b ∈ Z∗n such that b2hw ≡ −1 (mod n). By
the Chinese Remainder Theorem, there is an a ∈ Z∗

n such that

(1) a ≡ b (mod n1), and

(2) a ≡ 1 (mod n2).
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We show that a ̸∈ Un by leading the claim a ∈ Un to a contradiction.
At first, let us consider a ∈ Un since a2hw ≡ 1 (mod n). Then,

also a2hw ≡ 1 (mod n1). However, because of (1) a2hw ≡ b2hw ≡ −1
(mod n1) holds, which is impossible since n1 > 2.

The other possibility is that a ∈ Un since a2hw ≡ −1 (mod n).
Then, a2hw ≡ −1 (mod n2). However, because of (2) a2hw ≡ 1
(mod n2), which is impossible since n2 > 2. q.e.d.

Miller showed that, under the assumption of the Extended Rie-
mann Hypothesis (ERH), this test yields a deterministic polynomial-time
algorithm witnessing primes ∈ P.

Theorem 6.8 (Miller). The ERH implies that there is a function f : N →
N such that f (n) is bounded by a polynomial in log n such that, for all
odd non-prime numbers n > 2, one of the following is true:

(i) n is a prime power;

(ii) there is an a < f (n) with a ̸∈ Mn, i.e., the use of a in the Rabin-
Miller test on input n leads to the result “n is composed”.

Corollary 6.9. The ERH implies primes ∈ P.

6.2 Probabilistic complexity classes and Turing machines

For m ∈ N, we consider {0, 1}m as a probability space with uniform
distribution: For every u ∈ {0, 1}m, the probability

Pry∈{0,1}m [y = u] =
1

2m .

Definition 6.10. A probabilistic Turing machine (PTM) is a Turing machine
whose input consists of a pair (x, y) ∈ Σ∗ × {0, 1}∗. Here, x ∈ Σ∗

denotes the actual input and y ∈ {0, 1}∗ a random word controlling the
computation of the machine.

A PTM M is called p(n)-time bounded if M stops after at most
p(|x|) steps on input (x, y). Without loss of generality, we can assume
that |y| = p(|x|).
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Let M be p(n)-time bounded. If we consider M as an acceptor over
Σ∗ × {0, 1}∗, we obtain the language L(M) ⊆ Σ∗ × {0, 1}∗. Hence, we
define M as a probabilistic acceptor over Σ∗. For x ∈ Σ∗ with |x| = n , we
set:

Pr[M accepts x] := Pry∈{0,1}p(n) [(x, y) ∈ L(M)]

=
|{y ∈ {0, 1}p(n) : (x, y) ∈ L(M)}|

2p(n)
.

Lemma 6.11. A language A ⊆ Σ∗ is in NP if and only if there is a
polynomial PTM M such that A = {x ∈ Σ∗ : Pr[M accepts x] > 0}.

Proof. Consider A ∈ NP. Then, there is a B ∈ P and a polynomial p(n)
such that A = {x ∈ Σ∗ : ∃y (|y| ≤ p(|x|) ∧ (x, y) ∈ B}. It is not
difficult to modify B and p(n) in a way that A = {x ∈ Σ∗ : (∃y ∈
{0, 1}p(|x|) (x, y) ∈ B}. Let M be a polynomial, deterministic TM over
Σ∗ × {0, 1}∗ with L(M) = B. If we consider M as a probabilistic TM
over Σ∗, we obtain:

A = {x ∈ Σ∗ : Pry∈{0,1}p(n) [(x, y) ∈ L(M)] > 0}
= {x ∈ Σ∗ : Pr[M accepts x] > 0}.

Consider now A = {x ∈ Σ∗ : Pr[M accepts x] > 0} for
a polynomial PTM M. Hence, for some suitable polynomial p,
A = {x ∈ Σ∗ : Pry∈{0,1}p(n) [(x, y) ∈ L(M)] > 0}. Then, B :=

{(x, y) ∈ Σ∗ × {0, 1}p(|x|) : (x, y) ∈ L(M)} in P and therefore,
A = {x ∈ Σ∗ : ∃y (|y| ≤ p(|x|) ∧ (x, y) ∈ B} in NP. q.e.d.

The probability to find a suitable witness y for an NP problem on
input x simply by guessing can be very small. “Good” probabilistic
algorithms are successful in guessing, i.e., they guess suitable witnesses
with a high probability. We call a probabilistic algorithm for A stable,
if Pr[M accepts x] for x ∈ A is significantly larger than Pr[M accepts x]
for x ̸∈ A.
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Definition 6.12. Consider a language A ⊆ Σ∗.

• A ∈ PP (probabilistic polynomial time), if there is a polynomial
PTM M such that

A = {x : Pr[M accepts x] >
1
2
}.

• A ∈ BPP (bounded error probabilistic polynomial time), if there is
a polynomial PTM M such that

x ∈ A =⇒ Pr[M accepts x] ≥ 2
3

and

x ̸∈ A =⇒ Pr[M accepts x] ≤ 1
3

.

Probabilistic algorithms are subject to two kinds of error probabili-
ties:

(1) Incorrect positive: x ̸∈ A but Pr[M accepts x] > 0.
(2) Incorrect negative: x ∈ A but Pr[M accepts x] < 1, i.e.,

Pr[M does not accept x] = 1− Pr[M accepts x] > 0.

We obtain the following picture for the complexity classes defined
so far:

BPP: both error probabilities ≤ 1
3 ,

PP: only the trivial bound, error probability ≤ 1
2 , that can

be obtained by tossing a coin,

NP: no incorrect positive error, but Pr[M accepts x] for
x ∈ A ⊆ NP can be arbitrarily small.

Definition 6.13. In addition to PP and BPP, the notion of error proba-
bility leads us to the following probabilistic complexity classes:

• A ∈ RP (random probabilistic polynomial time), if there is a poly-
nomial PTM M such that

x ∈ A =⇒ Pr[M accepts x] ≥ 2
3 and

x ̸∈ A =⇒ Pr[M accepts x] = 0.

(no incorrect positive results).
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• A ∈ Co-RP :⇐⇒ A ∈ RP, i.e., there is a polynomial PTM M such
that

x ∈ A =⇒ Pr[M accepts x] = 1 and

x ̸∈ A =⇒ Pr[M accepts x] ≤ 1
3 .

(no incorrect negative results).
• A ∈ ZPP (zero-error probabilistic polynomial time), if A ∈ RP and

A ∈ Co-RP.

For the interpretation of ZPP, we consider a language A ∈ ZPP.
Then, there are polynomial PTM M+ and M− for A ∈ RP and A ∈ RP.
Consider now a PTM M that simulates the computations of M+ and
M− in parallel and accepts the input if M+ accepts it and rejects if
M− accepts it. In the case that M+ rejects and M− accepts, M returns
"‘don’t know"’. Obviously, M is working error-free, i.e., the answers are
always correct. It does, however, return an unsatisfying result with a
probability of ε ≤ 1/3. By repeating with independent random inputs,
ε can be made arbitrarily small.

Example 6.14. The Rabin-Miller primality test (RM) shows that primes ∈
coRP. In 1987, Adleman and Huang have shown (the much more
difficult result) that primes is also in RP. Hence, primes ∈ ZPP.

Obviously, the following inclusions hold:

RP

⊆ ⊆

P ⊆ ZPP BPP ⊆ PP

⊆ ⊆

Co-RP

Furthermore, RP ⊆ NP, Co-RP ⊆ Co-NP and ZPP ⊆ NP∩Co-NP.

Theorem 6.15. NP ⊆ PP ⊆ Pspace.

Proof. Consider A ∈ NP. By Lemma 6.11, there is a PTM M with
A = {x ∈ Σ∗ : Pr[M accepts x] > 0}. Let M′ be a PTM accepting
(x, y0y1y2 . . . ) if, and only if, either y0 = 1 or M accepts (x, y1y2 . . . ).
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Then,

Pr[M′ accepts x] =
1
2

+
1
2

Pr[M accepts x],

and we obtain A = {x : Pr[M′ accepts x] > 1
2} ∈ PP.

On the other hand, consider A ∈ PP. Then,

x ∈ A ⇐⇒ Pr[M accepts x] = Pry∈{0,1}p(n) [(x, y) ∈ L(M)] >
1
2

.

Therefore, for some given input x, all computations of M on input
(x, y) with y ∈ {0, 1}p(n) can be simulated using polynomial space to
determine whether more than 2p(n)−1 of the pairs (x, y) are accepted.

q.e.d.

Note that the relation between BPP and NP remains unclear.

In the following, we introduce a method to reduce the error prob-
ability of a BPP algorithm. Here, the fundamental idea is to use k
iterations and then to decide for the most frequent result obtained.

Let M be a p(n)-time bounded PTM with an error probability
≤ ε < 1

2 . Let Mk be a PTM accepting (x, y1y2 . . . yk) with yi ∈ {0, 1}p(n)

if and only if |{i : (x, yi) ∈ L(M)}| ≥ k/2. The algorithm Mk is
polynomial if k = k(n) is polynomial in n.

To compute the error probability of Mk, we need a result from
probability theory.

Let X1, . . . , Xk be random variables over {0, 1} with Pr[Xi = 1] = p
and Pr[Xi = 0] = 1− p for 0 < p < 1 (Bernoulli random variables). The
sum X = ∑k

i=1 Xi is a binomially distributed random variable over N.
Its expectation is E(X) = p · k. The following lemma gives a probability
estimate for the case that the value of X differs less than d from the
expectation:

Lemma 6.16 (Chernoff). For d ≥ 0,

Pr[X− pk ≥ d] ≤ e−
d2

4kp(1−p) ≤ e−
−d2

k and Pr[pk−X ≥ d] ≤ e−
−d2

k .

Coming back to our original problem, for ȳ = y1 . . . yk (with yi ∈
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{0, 1}p(n)), we define the random variables

Xi(ȳ) :=

1 if (x, yi) ∈ L(M),

0 otherwise.

Let A be a language that is decided by a BPP algorithm M with an
error probability ≤ ε < 1

2 . Then,

(1) For x ̸∈ A, p := Pr[Xi = 1] ≤ ε. With X := ∑k
i=1 Xi,

Pr[Mk accepts x] = Pr[X ≥ k
2
].

Applying Chernoff’s Lemma, we obtain

Pr[X ≥ k/2] = Pr[X− pk ≥ k/2− pk] ≤ e−( 1
2−p)2k = 2−Ω(k).

Let q(n) be a suitable polynomial. For k ≥ c · q(n) (c is a suit-
able constant), we obtain an incorrect positive error probability
≤ 2−q(n).
An analogous statement holds for incorrect positive error probabil-
ity:

(2) For x ∈ A, Pr[M accepts x] = Pr[Xi = 1] = p ≥ 1− ε and

Pr[Mk does not accept x] = Pr
[

X <
k
2

]
= Pr

[
pk− X ≥ (p− 1

2
)k
]

≤ e−(p− 1
2 )2k = 2−Ω(k).

Hence, we have shown:

Theorem 6.17. For every language A ∈ BPP and every polynomial q(n),
there is a polynomial PTM M accepting A with an error probability
≤ 2−q(n), i.e.,

x ∈ A =⇒ Pr[Mk accepts x] ≥ 1− 2−q(|x|),

x ̸∈ A =⇒ Pr[Mk accepts x] ≤ 2−q(|x|).
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An analogous statement also holds for the class RP.

From Theorem 6.17, we obtain an interesting result concerning the
relationship between BPP and circuit complexity.

Let M be some BPP algorithm for A with an error probability of
≤ 2−q(n). For all x,

|{y ∈ {0, 1}p(n) : (x, y) ∈ L(M) ⇐⇒ x ∈ A}|
2p(n)

≥ 1− 2−q(n).

It follows that for every fixed input length n, there are random values
y ∈ {0, 1}p(n) returning the correct result for all x ∈ Σn:

|{y ∈ {0, 1}p(n) : y “bad” for at least one x ∈ Σn}| =
∑
|x|=n

|{y ∈ {0, 1}p(n) : y “bad” for x}| ≤ |Σn| · 2−q(n) · 2p(n).

If q(n) is chosen such that limn→∞ |Σn| · 2−q(n) = 0 (e.g., q(n) = n2,
or q(n) = cn with c ≥ log |Σ|), we obtain that for large n at least one
y(n) ∈ {0, 1}p(n) gives the correct result for all x ∈ Σn;

Hence, there is a function f : N → {0, 1}∗ with the following
properties:

• f is polynomially-bounded: | f (n)| = p(n) and
• for all sufficiently long x ∈ Σ∗,

x ∈ A ⇐⇒ (x, f (x)) ∈ L(M)︸ ︷︷ ︸
polynomial

.

Definition 6.18. A ∈ Σ∗ is non-uniform polynomially-decidable (A ∈
non-uniform P) if there is a function f : N → {0, 1}∗ and a set B ∈ P
such that

• | f (n)| ≤ p(n) for a polynomial p and
• A = {x ∈ Σ∗ : (x, f (|x|)) ∈ B}.

Such a function f is called an advice function since it provides
additional information f (n) on every input length n that allows to
decide A in polynomial time. Note that f itself does not need to be
computable. The class non-uniform P is sometimes also denoted by
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P/poly, “P with polynomial advice”. This additional information f (n)
can be understood as the encoding of a polynomial circuit deciding A
on input length n. Indeed, it is easy to see that

A ∈ non-uniform P ⇐⇒ A is decided by a sequence of circuits

of polynomial size.

Corollary 6.19. BPP ⊆ non-uniform P. Therefore, all problems in BPP
are of polynomial circuit complexity.

Theorem 6.20. BPP ⊆ Σp
2 ∩Πp

2 .

Proof. It is sufficient to show that BPP ⊆ Σp
2 . Since coBPP = BPP, it

follows directly that BPP ⊆ Πp
2 .

Consider A ∈ BPP. By Theorem 6.17, there is a polynomial PTM
M deciding A with error probability < 2−n:

x ∈ A =⇒ Pry∈{0,1}p(n) [M accepts x] > 1− 2−n , and

x ̸∈ A =⇒ Pry∈{0,1}p(n) [M accepts x] < 2−n .

In particular,

x ∈ A ⇐⇒ |{y ∈ {0, 1}p(n) : (x, y) ∈ L(M)}| > 2p(n)(1− 2−n).

Fix some x, |x| = n. Let Ω = {0, 1}p(n) and B ⊆ Ω. We seek a criterion
for the property |B| > (1− 2−n)|Ω|. The idea is to cover all of Ω with
“few” images of B under translation modulo 2.

For y, z ∈ Ω, let y ⊕ z := w0 . . . wp(n)−1 ∈ Ω with wi = yi ⊕ zi

(bitwise addition modulo 2). Let B⊕ z := {y⊕ z : y ∈ B}.

Lemma 6.21. For sufficiently large n and B ∈ {0, 1}p(n) such that either

(i) |B| < 2−n · 2p(n) or
(ii) |B| > (1− 2−n) · 2p(n)

the following holds:

(ii) ⇐⇒ ∃z = (z1, . . . , zp(n)) ∈ Ωp(n) :
⋃
i

B⊕ zi = {0, 1}p(n).
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Proof. (⇒):
⋃

i B⊕ zi contains at most p(n) · |B| elements. If
⋃

i B⊕ zi

covers all of Ω, (i) is impossible since p(n) · 2−n|Ω| < |Ω| for large n.
(⇐): We use a probabilistic argument. Fix some y ∈ Ω and choose

z ∈ B⊕ y. If we assume that (ii) holds, it follows that

Pr
z∈Ω

[y ∈ B⊕ z] = Pr
z∈Ω

[z ∈ B⊕ y] = Pr
z∈Ω

[z ∈ B] > 1− 2−n.

Hence, we obtain:

Prz∈Ωn

[∧
i

y ̸∈ B⊕ zi

]
≤ ∏

i
Przi∈Ω[y ̸∈ B⊕ zi] ≤ 2−n·p(n).

Therefore, the probability that some random z ∈ Ωn does not fulfil the
conditions of the lemma can be approximated as follows:

Prz∈Ωn

[⋃
i

B⊕ zi ̸= Ω
]
≤ ∑

y∈Ω
Prz∈Ωn

[∧
i

y ̸∈ B⊕ zi

]
≤ 2p(n) · 2−n·p(n) < 1 for large n.

Hence, there must be a “good” z. q.e.d.

We can thus express A as follows: Let Bx = {y ∈ Ω : (x, y) ∈
L(M)}. Then,

x ∈ A =⇒ |Bx| > (1− 2−n) · 2p(n), and

x ̸∈ A =⇒ |Bx| < 2−n · 2p(n).

Hence,

x ∈ A ⇐⇒ ∃z ∈ Ωp(n) :
p(n)⋃
i=1

Bx ⊕ zi = Ω

⇐⇒ ∃z ∈ Ωp(n)∀y ∈ Ω
p(n)∨
i=1

y ∈ Bx ⊕ zi︸ ︷︷ ︸
≡y⊕zi∈Bx

⇐⇒ ∃z ∈ Ωp(n)∀y ∈ Ω
p(n)∨
i=1

(x, y⊕ zi) ∈ L(M)︸ ︷︷ ︸
in P

.

Therefore, A ∈ Σp
2 . q.e.d.
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6.3 Probabilistic proof systems and Arthur-Merlin games

We go back to the year 528 and turn our attention to the Court of King
Arthur. A Round Table for 150 knights needs to be prepared. King
Arthur is worried about peace at table as many knights are enemies.
A seating arrangement needs to be found that makes sure no knights
that are enemies are seated next to each other. Hence, King Arthur has
the following problem: Given a graph G = (P, E) with P = {Arthur} ∪
{K1 . . . K150}, and E = {(x, y) : x not enemy with y}; find a Hamilton
cycle of G.

Arthur is a wise man and assumes that the design of such a seating
arrangement might lead to evaluate all 150! possibilities for which
the remaining time until the Round Table would not be sufficient.
That is why he charges his magician Merlin with this task. Merlin
possesses some super-natural power and can therefore find a peaceful
arrangement if it does exist.

As most reasonable people, King Arthur does not completely rely
on magic. He therefore always double-checks all solutions that Merlin
proposes before actually implementing them. That is, once Merlin pro-
poses a seating arrangement k0, k1, . . . , k150 (let k0 be the king), Arthur
himself makes sure that for all j, (kj, kj+1) ∈ E.

However, the day comes when a new Round Table is going to
take place. Some knights have reconciled, others have become enemies.
Merlin finds out that there is no peaceful arrangement for this situation
any more. King Arthur does not want to accept this result without
proof, but a verification of all 150! possibilities is impossible.

Hence, Merlin needs to find a proof for the nonexistence of a
seating arrangement that can be verified by Arthur. Since he cannot
come up with one (as he does not know whether ham ∈ coNP), Merlin
ends up in prison. After a while, the king regrets his impatience and is
willing to accept a proof that he can verify with a probability of 1/21000.

6.3.1 Interactive proof systems

The notion of a proof can—informally speaking—be defined as an
interaction between a prover (P) and a verifier (V). After the interaction

81



6.3 Probabilistic proof systems and Arthur-Merlin games

is completed, the verifier decides whether to accept the proof. Hence, a
proof system is a protocol defining the interaction of P and V on input x
(the theorem to prove). As opposed to proof notion from classical logic,
this approach allows interesting observations on complexity.

The class NP is characterised by the following deterministic proof
system: A language Q ⊆ Σ∗ is in NP if there are Turing computable
functions P : Σ∗ → Σ∗ and V : Σ∗ × Σ∗ → {accept, reject} with

• V polynomial in the first argument (i.e., timeV(x, y) ≤ p(|x|) for
some polynomial p).

• Completeness: for all x ∈ Σ∗, x ∈ Q =⇒ V(x, P(x)) = accept.

• Correctness: for all P′ : Σ∗ → Σ∗ and all x, we have x ̸∈ Q =⇒
V(x, P′(x)) = reject (i.e., no prover P′ can convince V of an incorrect
proposition “x ∈ Q.”)

Example 6.22. The graph isomorphism problem graphiso = {(G, H) :
G, H graphs, G ∼= H} ∈ NP. Without loss of generality, we can assume
that G = (V, EG) and H = (V, EH). Then, on an input (G, H), there is
the following proof system:

• P returns some permutation π : V → V.

• V verifies whether π : G ∼→ H.

It is unknown whether graphiso ∈ coNP, that is, whether there is
an NP proof system for graphnoniso = {(G, H) : G ̸∼= H}.

In the following, we introduce interactive proof systems that allow a
more sophisticated interaction between prover and verifier: the state-
ments made by the prover are verified probabilistically in polynomial
time; the verifier accepts with an error probability ε > 0.

Definition 6.23. Let Σ be an alphabet. An interactive protocol on
Σ∗ is a pair (P, V) of computable functions P : Σ∗ → Σ∗, V :
Σ∗ × Σ∗ × {0, 1}ω → Σ∗ ∪ {accept, reject} where V is polynomial in
the first argument (i.e., timeV(x, y, z) ≤ p(|x|) for some polynomial p).

The history of (P, V) on x ∈ Σ∗ with the random word y ∈ {0, 1}ω
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is a sequence U(x, y) = u0, u1, . . . with u0 = x and ui+1 = uiai where

ai :=

V(x, ui, y) if i is even,

P(ui) if i is odd and ai ̸∈ {accept, reject}.

We say (P, V) accepts x (with the random word y) if uk = accept for
some k. For every x ∈ Σ∗, the history of (P, V) is a random variable
U(x) : y 7→ U(x, y).

Definition 6.24. Consider Q ⊆ Σ∗. An interactive proof system for Q is
an interactive protocol (P, V) satisfying the following requirements:

• Completeness: for all x ∈ Σ∗,
x ∈ Q =⇒ Pr[(P, V) accepts x] > 2

3 .
• Correctness: for all P′ : Σ∗ → Σ∗ and all x,

x ̸∈ Q =⇒ Pr[(P′, V) accepts x] < 1
3 .

A round of U(x, y) is a pair (a2i, a2i+1) (hence, a “message” of P
followed by an “answer” of V). We say a protocol has ≤ q rounds if,
for all x ∈ Σ∗ and all y ∈ {0, 1}ω , the history U(x, y) has at most q(|x|)
rounds.

Definition 6.25. IP (respectively, IP[q]) is the class of all Q ⊆ Σ∗ for
which there is an interactive proof system (respectively, one with ≤ q
rounds).

Example 6.26. graphnoniso ∈ IP[2]. The proof system (P, V) works on
input (G0, G1) with Gi = (Vi, Ei) as follows:

• V chooses some index i, i′ ∈ {0, 1} at random and some permuta-
tion π, π′ : V → V. Then, he computes H = πGi, H′ = π′Gi and
sends both H and H′ to the prover. (The chosen indices i, i′, and
permutations π, π′ remain secret!)

• P replies with j, j′ ∈ {0, 1} such that H ∼= Gj, and H′ ∼= G′j .
• V accepts if i = j and i′ = j′; otherwise V rejects.

Analysis.

• If G0 ̸∼= G1, then H and H′ are isomorphic to exactly one input
graph. Thus, P can determine i and i′. It follows G0 ̸∼= G1 =⇒
Pr[(P, V) accepts (G0, G1)] = 1.
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• If G0 ∼= G1 then H and H′ are isomorphic to both graphs and all
G ∼= G0, G1 appear with equal probability. Every prover P′ can
do no better than guessing j, j′. Hence, for all P′: G0 ∼= G1 =⇒
Pr[(P, V) accepts (G0, G1)] ≤ 1

4 .

Lemma 6.27. NP ⊆ IP[1] ⊆ IP[2] ⊆ · · · ⊆ IP ⊆ Pspace.

Proof (IP ⊆ Pspace).
Let (P, V) be an interactive proof system for Q. Since V is polynomial in
the first argument, V on input (x, ui, y) reads only the first p(|x|) sym-
bols of ui and y. It is possible, using polynomial space, to simulate all
possible histories U(x, y) and to determine Pr[(P, V) accepts x]. q.e.d.

It is interesting to know where—between NP and Pspace—the
class of interactively provable languages is located. For this, we return
to Arthur and Merlin.

Definition 6.28. An Arthur-Merlin game (for a language Q) is an in-
teractive proof system for Q with the additional requirement that the
prover (Merlin) can see the random bits used by the verifier (Arthur).
Without loss of generality, the messages from Arthur to Merlin are then
composed of a sequence y1, . . . , yr (r ≤ p(|x|)) of random bits.

AM (respectively, AM[q]) is the class of all Q ⊆ Σ∗ that have an
Arthur-Merlin game (respectively, one with ≤ q(|x|) rounds).

Obviously, AM ⊆ IP , and

AM[q] ⊆ IP[q].

In the following, we see that one of the most difficult problems
from Pspace is in AM.

6.3.2 An Arthur-Merlin game for the permanent of a matrix

Definition 6.29. Let R be a ring, R′ ⊂ R some subset and A ∈ Mn(R′)
an n× n matrix over R′. The permanent of A (over R) is defined as

perR A = ∑
σ∈Sn

a1σ(1) . . . anσ(n).
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The analogy to determinants is striking:

det A = ∑
σ∈Sn

sgn(σ)a1σ(1) . . . anσ(n).

By removing the ith line and the jth column, one obtains the ij minor
Aij of A, and it follows

det A =
n

∑
i=1

(−1)i+1ai1 · Ai1 and

perA =
n

∑
i=1

ai1 · Ai1.

However, the determinant can be computed efficiently where as no
efficient algorithm is known for the permanent. It is currently assumed
that in general it is not efficiently computable. The following result
confirms this assumption.

Definition 6.30. #P is the class of all functions f : Σ∗ → N for which
there is a polynomial nondeterministic TM M such that the number of
accepting computations of M on x is exactly f (x).

Theorem 6.31 (Toda). PH ⊆ #P.

Theorem 6.32 (Valiant). The permanent (over Z) of 0-1-matrices is
#P -complete.

A polynomial algorithm to compute the permanent would therefore
imply PH = P. An interactive proof system for

per = {(A, q) : A ∈ Mn({0, 1}), perZ A = q}

hence implies that every problem Q ∈ PH has an interactive proof
system. This would in particular be true for

ham = {G : G contains no Hamilton circle } ∈ coNP ⊆ PH.

Theorem 6.33. There is an Arthur-Merlin game for per.

Proof. (1) Since A ∈ Mn({0, 1}) =⇒ 0 ≤ perZ(A) ≤ n!. Let p > n! be
a prime number. Then, perFp

(A) = perZ(A) over the field Fp.
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(2) For a field F, let F[X]d = { f ∈ F : degree f ≤ d}. If A ∈
Mn(F[X]d) then perA ∈ F[X]nd.

(3) The protocol:
Arthur and Merlin work with a list L = {(A1, q1) . . . (Ar, qr)}
where Ai ∈ Mk(Fp) and qi ∈ Fp (k ≤ n). L is correct if perAi = qi

for i = 1, . . . , r.
Beginning: L = {(A, q)}, A ∈ Mn(Fp)}.
In a sequence of subprotocols ‘expand’ and ‘reduce’, L is changed
until, at the
End: L = {(B, s)}, B ∈ M2(Fp).
Arthur accepts if, and only if, per B = s.

• if L contains only one pair: L = {(A, q)}, A ∈ Mk(Fp)}, k > 2:

Expansion step:
L 7→ L′ = {(A1, q1), . . . , (Ak, qk)} where Ai ∈ Mk−1(F)p.
Subprotocol expand(L)
Input: L = {(A, q)}
Merlin: computes qi = per(Ai1) for i = 1, . . . , k and sends

the results q1, . . . , qk to Arthur.
Arthur: verifies whether ∑k

i=1 ai1qi = q.
If not, he rejects;
otherwise, he sets L′ = {(Ai1, q1), . . . , (Ak1, qk)}.

For this step, we have

L correct =⇒ L′ correct.

L incorrect =⇒ L′ incorrect (no matter how Merlin plays).

• if |L| > 1,
Reduction step: L 7→ L′ with |L′| = |L| − 1 such that

L correct =⇒ L′ correct.

L incorrect =⇒ L′ incorrect with high probability.

Consider (A, q1), (B, q2) ∈ L, A, B ∈ Mk(Fp). Set

C(X) = (1− X)A + XB
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=


...

. . . αx + β . . .
...

 ∈ Mk(Fp[X]).

With per C(X) =: f ∈ Fp[X], we have

C(0) = A, hence f (0) = per A;

C(1) = B, hence f (1) = per A.

Remark: To verify whether per A = q1 and per B = q2, it there-
fore suffices to determine the polynomial f and to evaluate it
at 0 and 1.

Subprotocol reduce(L):
Input: {(A, q1), (B, q2)}, A, B ∈ MkFp.
Merlin: sends Arthur c0, . . . , ck ∈ Fp

(claiming that f (X) = c0 + c1X + · · ·+ ckXk).
Arthur: sets g(X) = c0 + c1X + · · ·+ ckXk, and

verifies whether g(0) = q1 and g(1) = q2.
If not, he rejects;
otherwise, he chooses a random number a ∈ Fp and
sets L′ = (L− {(A, q1), (B, q1)} ∪ {(C(a), g(a))}.

For this step, we have

L correct =⇒ Merlin can play in such a way that
L′ is correct by sending the correct co-
efficients of f , i.e., such that g(X) =
f (X) = per C(X), and in particular
g(a) = per C(a).

L incorrect =⇒ with high probability L′ incorrect.

Reason: Assume that per A = per C(0) ̸= q1. Merlin sends
incorrect coefficients since g(0) = q1 ̸= f (0) = per A. Hence,
we have

87



6.3 Probabilistic proof systems and Arthur-Merlin games

f ̸= g =⇒ |{a : f (a) = g(a)}| ≤ k

=⇒ Pr[per C(a) = g(a)] ≤ k
p

<
1

(n− 1)!

for p > n!, and k ≤ n.

Hence, we obtain the Arthur-Merlin game described in Algorithm 6.2.
Analysis.

(a) The game is indeed an Arthur-Merlin protocol, i.e., all computa-
tions by Arthur are in P since

• p < 2n!, |p| = O(n log n) since n! = 2O(n log n),

• the arithmetical operations in Fp are polynomial in |p| and

• the protocol uses n − 2 expansion steps and ∑n−2
i=2 (i − 1) =

(n−1)(n−2)
2 reduction steps.

(b) (A, q) ∈ per =⇒ Pr[(M, A) accepts (A, q)] = 1.

Algorithm 6.2. Arthur-Merlin game for per

Input: (A, q), A ∈ Mn({0, 1}), q ∈ N

Merlin:
sends Arthur a prime number p ∈ [n!, 2n!] together with a short
proof showing that p is primea.

Arthur:
verifies that p is indeed a prime number between n! and 2n!.
if p not prime then reject

/* For the remainder of the protocol, all calculations are
done in Fp. */

L := {(A, q)}
while L ̸= {(B, s)} for a B ∈ M2(Fp) do

if |L| = 1 then expand(L) else reduce(L)
endwhile
Arthur:

verifies whether per B = s.
if yes then accept else reject

a It is known that for all a ∈ N there is a prime number between a and 2a (Bertrand’s
postulat). Since primes ∈ NP, there are short proofs for the fact that p is prime (i.e., there is
an L ∈ P with primes = {p : ∃w|w| ≤ |p|k : (p, w) ∈ L} (where w is a short proof).
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(c) Let (A, q) ̸∈ per and M′ some prover. Then, (M′, A) accepts
(A, q) =⇒ M′ has cheated successfully in at least one reduction
step. This can occur in one single reduction step with a probability
of at most 1

(n−1)! . Altogether, we obtain

Pr[(M′A) accepts (A, q)] < 1−
(

1− 1
(n− 1)!

) (n−1)(n−2)
2

<
(n− 1)(n− 2)

(n− 1)!
=

1
(n− 3)!

. q.e.d.

In 1992, this theorem was published by Lund, Fortnow, Karloff and
Nisan in JACM 39(4).

6.3.3 IP = Pspace

Only one month after Lund, Fortnow, Karloff and Nisan, Shamir showed
that IP = Pspace. In order to do so, he constructed an interactive proof
system (even an Arthur-Merlin game) for qbf. qbf is the problem to
evaluate quantified Boolean formulae, and it is Pspace-complete. An
Arthur-Merlin game for this problem therefore suffices to show that
all Q ∈ Pspace have an interactive proof system (and even an Arthur-
Merlin game). At the same time it shows that Arthur-Merlin games are
equally strong as interactive proof systems.

Theorem 6.34 (Shamir). There is an Arthur-Merlin game for qbf.

Proof (Simplified version).

(1) Arithmetisation of a formula from quantified propositional logic.
First, let ϕ(X1, . . . , Xn) be a propositional formula (without quan-
tifiers) and let F be some arbitrary field. A map ϕ 7→ Fϕ ∈
F[X1, . . . , Xn] is defined inductively as follows:

FXi = Xi,

Fα∧β = Fα · Fβ,

F¬α = 1− Fα,

Fα∨β = Fα ◦ Fβ := Fα + Fβ − FαFβ.
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Let I : {X1, . . . , Xn} 7→ {0, 1} be an interpretation with I(X1) =
ε1, . . . , ε(Xn) = εn. We write ϕ(ε1, . . . , εn) for I(ϕ). For every field
F and all ε1, . . . , εn ∈ {0, 1}, Fϕ(ε1, . . . , εn) = ϕ(ε1, . . . , εn).
For f ∈ F[Y, X], we define the following:

(∀Y f )(X) = f (0, X) · f (1, X) ∈ F[X],

(∃Y f )(X) = f (0, X) ◦ f (1, X) ∈ F[X],

(RY f )(X) = f (mod Y2 −Y) ∈ F[Y, X].

(all Yi with i > 0 are replaced by Y)

Hence, we obtain the following arithmetisation of quantified propo-
sitional formulae with quantifiers:

F∀Yϕ = (∀YFϕ),

F∃Yϕ = (∃YFϕ).

Obviously, for all quantified propositional formulae Ψ(X1, . . . , Xk),
we have FΨ(ε1, . . . , εk) = Ψ(ε1, . . . , εk). In particular if free(Ψ) = ∅,
Ψ ∈ qbf ⇐⇒ FΨ = 1 holds.
However, we have the following problem: The explicit construction
of FΨ is just as difficult as the evaluation of the QBF formula Ψ.
Length and degree of the polynomial FΨ can become arbitrarily
large since every application of the quantifiers ∀ and ∃ double both
the length and degree.

(2) Degree reduction using R.
For u ∈ {0, 1}, we have (RY f )(u, X) = f (u, X). Further, for f ∈
F[X1, . . . , Xn] set

(R∗ f )(X1, . . . Xn) = (RX1RX2 . . . RXn f )(X1, . . . , Xn).

For ε1, . . . εn ∈ {0, 1},

• (R∗ f )(ε1, . . . εn) = f (ε1, . . . εn), and

• degree(R∗ f ) ≤ n.

Let Ψ = Q1X1 . . . QnXn ϕ(X1, . . . , Xn) be a quantified Boolean
formula with free(Ψ) = ∅. Then, Ψ ∈ qbf if, and only if,
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(Q1X1R∗Q2X2 . . . R∗QnXnR∗Fϕ) = 1 since the R∗ operator leaves
the functional values invariant for the arguments 0,1.

(3) Arthur-Merlin game.
Let f ∈ F[X1, . . . , Xn], F be finite. We assume there is an Arthur-
Merlin game with (M, A) f for {(u, v) ∈ Fn+1 : f (u) = v} with

(i) f (u = v) =⇒ Pr[M accepts (u, v)] = 1,

(ii) f (u ̸= v) =⇒ Pr[M′ accepts (u, v)] < ε for all M′.

Let g ∈ {(∃Xi f ), (∀Xi f ), (RXi f ) : i = 1, . . . , n}. We assume
Arthur knows a d with degree g ≤ d.
Based on these assumptions, we construct an Arthur-Merlin game
(M, A)g that calls (M, A) f exactly once as subprotocol with

(i) f (u = v) =⇒ Pr[M accepts (u, v)] = 1,

(ii) f (u ̸= v) =⇒ Pr[M′ accepts (u, v)] < ε + d
|F| for all M′.

We obtain the following different cases:

(a) g(X) = (∀Y f )(Y, X).
Merlin wants to show that g(u) = v. He sends the coefficients
of a polynomial s(Y) (requiring that s(Y) = f (Y, u)). If degree
s > d or s(0) · s(1) ̸= v, Arthur rejects. Otherwise, Arthur
chooses some random w ∈ F. Merlin now needs to convince
Arthur with the protocol (M, A) f that f (w, u) = s(w).

(b) g(X) = (∃Y f )(Y, X).
Analogously, with s(0) ◦ s(1) instead of s(0) · s(1).

(c) g(Y, X) = (RY f )(Y, X).

We use

Lemma 6.35. (RY f )(Y, X) = f (0, X) + [ f (1, X)− f (0, X)] ·Y.

Proof. Let f = ∑m
i=0 Yi · gi(X). Then,

f (0, X) = g0(X) and f (1, X) =
m

∑
i=0

gi(X).

Hence, we obtain (RY f ) = g0(X) + ∑m
i=0 gi(X) = f (0, X) +

[ f (1, X)− f (0, X)] ·Y. q.e.d.

91



6.3 Probabilistic proof systems and Arthur-Merlin games

Merlin wants to convince Arthur that g(z, u) = v. He sends
Arthur the coefficients of a polynomial s(Y) (requiring that
s(Y) = f (Y, u)). If degree s > d or s(0) + z(s(1)− s(0)) ̸= v,
Arthur rejects. Otherwise, he sends Merlin some random
w ∈ F. Merlin now needs to convince Arthur with the protocol
(M, A) f that f (w, u) = s(w).

The game described above fulfils the completeness requirement.
As for correctness, we note that M′ has the following possibilities
to cheat successfully:

• In (M, A) f (with probability ε).
• If s(Y) ̸= f (Y, u) correspond at a randomly selected point w

(probability ≤ d
F ).

(4) Summary.
Given Ψ = Q1X1 . . . QnXn ϕ. Merlin convinces Arthur that

GΨ = Q1X1R∗ . . . R∗QnXnR∗Fϕ = 1

with the help of the above-mentioned reduction steps. At the
end, an equation Fϕ(u1, . . . , un) = v needs to be verified. For a
propositional formula ϕ, this is possible in polynomial time.
The error probability of the complete protocol is at most

#∃, ∀, R-operators · maximal degree
|F| =

O(n2) + O(|ϕ|2
|F| .

Therefore, it suffices to choose a field Fp with p ≥ c · |ϕ|4. q.e.d.
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