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5 Alternating Complexity Classes

Alternating algorithms are a generalization of non-deterministic al-
gorithms based on two-player games. Indeed, one can view non-
deterministic algorithms as the restriction of alternating algorithms
to solitaire (i.e., one-player) games. Since complexity classes are mostly
defined in terms of Turing machines, we focus on the model of alter-
nating Turing machines. But note that alternating algorithms can be
defined in terms of other computational models, also.

Definition 5.1. An alternating Turing machine is a non-deterministic
Turing machine whose state set Q is divided into four classes Q∃ ,
Q∀ , Qacc , and Qrej. This means that there are existential, universal,
accepting and rejecting states. States in Qacc ∪ Qrej are final states. A
configuration of M is called existential, universal, accepting, or rejecting
according to its state.

The computation graph GM,x of an alternating Turing machine M
for an input x is defined in the same way as for a non-deterministic
Turing machine. Nodes are configurations (instantaneous descriptions)
of M, there is a distinguished starting node C0(x) which is the input
configuration of M for input x, and there is an edge from configuration
C to configuration C′ if, and only if, C′ is a successor configuration
of C. Recall that for non-deterministic Turing machines, the acceptance
condition is given by the reachability problem: M accepts x if, and
only if, in the graph GM,x some accepting configuration Ca is reachable
from C0(x). For alternating Turing machines, acceptance is defined by
the game problem (see Sect. 3.3): the players here are called ∃ and ∀,
where ∃ moves from existential configurations and ∀ from universal
ones. Further, ∃ wins at accepting configurations and loses at rejecting
ones. By definition, M accepts x if, and only if, Player ∃ has a winning
strategy from C0(x) for the game on GM,x.
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5.1 Complexity Classes

When considering the computation tree TM,x, which corresponds
to the unraveling of the configuration graph from C0(x), we call a
subtree TC accepting if ∃ has a winning strategy from C.

5.1 Complexity Classes

Time and space complexity are defined as for nondeterministic Turing
machines. For a function F : N → R, we say that an alternating Turing
machine M is F-time-bounded if for all inputs x, all computation paths
from C0(x) terminate after at most F(|x|) steps. Similarly, M is F-space-
bounded if no configuration of M that is reachable from C0(x) uses
more than F(|x|) cells of work space. The complexity classes Atime(F)
and Aspace(F) contain all problems that are decidable by, respectively,
F-time bounded and F-space bounded alternating Turing machines.

The following classes are of particular interest:

• ALogspace = Aspace(O(log n)),

• APtime =
⋃

d∈N Atime(nd),

• APspace =
⋃

d∈N Aspace(nd).

Example 5.2. qbf ∈ Atime(O(n)). We assume that, without loss of
generality, negations appear only in front of variables. An alternating
version of Eval(ψ, I) is the following:

Algorithm 5.1. Alternating Eval(ψ, I)

Input: (ψ, I) where ψ ∈ qbf und I : free(ψ) → {0, 1}
if ψ = Y then

if I(Y) = 1 then accept else reject
endif
if ψ = ϕ1 ∨ ϕ2 then “∃” guesses i ∈ {1, 2}; return Eval(ϕi, I)
if ψ = ϕ1 ∧ ϕ2 then “∀” chooses i ∈ {1, 2}; return Eval(ϕi, I)
if ψ = ∃Xϕ then “∃” guesses j ∈ {0, 1}; return Eval(ϕ, I[X = j])
if ψ = ∀Xϕ then “∀” chooses j ∈ {0, 1}; return Eval(ϕ, I[X = j])
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5 Alternating Complexity Classes

5.2 Alternating Versus Deterministic Complexity

There is a general slogan that parallel time complexity coincides with
sequential space complexity.

Theorem 5.3. Let S(n) be space-constructible with S(n) ≥ n. Then,

Nspace(S) ⊆ Atime(S2).

Proof. We use the same trick as in the proof of Savitch’s Theorem: Let
L be decided by a nondeterministic Turing machine M with space
bounded by S(n) and in time 2c·S(n). Let Conf[S(n)] be the set of
configurations of M with space ≤ S(n). The alternating algorithm
Reach(C1, C2, t) (Algorithm 5.2) decides whether the configuration C2 ∈
Conf[S(n)] can be reached from configuration C1 ∈ Conf[S(n)] in at
most 2t steps. The algorithm is correct because C2 is reachable from C1

in at most 2t steps if there is some C such that Reach(C1, C, t− 1) and
Reach(C, C2, t− 1) accept.

Let f (t) = maxC1,C2∈Conf[S(n)] timeReach(C1, C2, t). Furthermore,
f (0) = O(S(n)) and for all t > 0, f (t) = O(S(n)) + f (t− 1). Hence,

f (t) = (t + 1) ·O(S(n)).

L can then be decided as follows: At first, for an input x, the input
configuration C0 of M on x is constructed. Then, some accepting final
configuration Ca of M is guessed. We will accept if Reach(C0, Ca, S(n))

Algorithm 5.2. Reach(C1, C2, t)

Input: C1, C2, t
if t = 0 then

if C1 = C2 or C2 ∈ Next(C1) then accept else reject
else /* t > 0 */

existentially guess C ∈ Conf[S(n)]
universally choose (D1, D2) = (C1, C) and (D1, D2) = (C, C2)
Reach(D1, D2, t− 1)

endif
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5.2 Alternating Versus Deterministic Complexity

accepts. This algorithm needs

(c · S(n) + 1)O(S(n)) = O(S2(n))

steps. By the linear Speed-Up Theorem, which also applies to alternat-
ing Turing machines, L ∈ Atime(S2). q.e.d.

Theorem 5.4. Let T be space-constructible and T(n) ≥ n. Then,
Atime(T) ⊆ Dspace(T2).

Proof. Let L ∈ Atime(T) and M be some alternating Turing machine
accepting L in time bounded by T(n). Then, there is some r so that
for all configurations C of M: |Next(C)| ≤ r. Algorithm 5.3, AT ,
computes whether or not the subtree TC is accepting (output 1) or
rejecting (output 0) for every configuration C in TM,x.

Obviously, this algorithm is working correctly. AT(C0(x)) decides
whether M accepts x and, hence, is a deterministic decision procedure
for L.

Algorithm 5.3. AT , deterministic evaluation of TC

Input: C
if C accepting then output 1
if C rejecting then output 0
if C existential then

for i = 1, . . . , r do
compute i-th successor configuration Ci of C
if F(Ci) = 1 then output 1

endfor
output 0

endif
if C universal then

for i = 1, . . . , r do
compute i-th successor configuration Ci of C
if F(Ci) = 0 then output 0

endfor
output 1

endif
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5 Alternating Complexity Classes

How much space does this algorithm need? Let C be some node
of height t in TM,x, i.e., all computations of M rooted at C need at most
t steps. Then:

spaceAT
(C) =

0 if t = 0

maxCi∈Next(C)(|Ci|+ spaceAT
(Ci)) if t > 0 .

Since Ci ∈ Next(C) is of height t− 1, we obtain spaceAT
(C) ≤ t · T(n)

and therefore spaceAT
(Co) ≤ T2(n). q.e.d.

In particular, we obtain

Theorem 5.5 (Parallel time complexity = sequential space complexity).

• APtime = Pspace.
• AExptime = Expspace.

Proof.

• Atime(nd) ⊆ Dspace(n2d) ⊆ Pspace,
Dspace(nd) ⊆ Nspace(nd) ⊆ Atime(n2d) ⊆ APtime.

• Atime(2nd
) ⊆ Dspace(22nd

) ⊆ Expspace,
Dspace(2nd

) ⊆ Atime(22nd
) ⊆ AExptime. q.e.d.

On the other hand, alternating space complexity corresponds to
exponential deterministic time complexity.

Theorem 5.6. For any space-constructible function S(n) ≥ log n, we
have that Aspace(S) = Dtime(2O(S)).

Proof. The proof is closely associated with the game problem. For any
S-space-bounded alternating Turing machine M, one can, given an
input x, construct the computation graph GM,x in time 2O(S(|x|) and
then solve the game problem in order to decide the acceptance of x
by M.

For the converse, we shall show that for any T(n) ≥ n and any
constant c, Dtime(T) ⊆ Aspace(c · log T).

Let L ∈ Dtime(T). Then there is a deterministic one-tape Turing
machine M that decides L in time T2. Let Γ = Σ ∪ (Q× Σ) ∪ {∗} and
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5.2 Alternating Versus Deterministic Complexity

t = G2(n). Every configuration C = (q, i, w) (in a computation on some
input of length n) can be described by a word

c = ∗w0 . . . wi−1(qwi)wi+1 . . . wt∗ ∈ Γt+2.

The ith symbol of the successor configuration depends only on the
symbols at positions i− 1, i, and i + 1. Hence, there is a function fM :
Γ3 → Γ such that, whenever symbols a−1, a0, and a1 are at positions
i− 1, i and i + 1 of some configuration c, the symbol fM(a−1, a0, a1) will
be at position i of the successor configuration c′.

The alternating algorithm A (Algorithm 5.4) decides L using space
O(log T(n)). If M accepts the input x, then Player ∃ has the following
winning strategy for the game on CA,x: the value chosen for s is the time
at which M accepts x, and (q+a), i are chosen so that the configuration
of M at time s is of the form ∗w0 . . . wi−1(q+a)wi+1 . . . wt∗. At the jth
iteration of the loop (that is, at configuration s − j), the symbols at
positions i− 1, i, i + 1 of the configuration of M at time s− j are chosen
for a−1, a0, a1.

Conversely, if M does not accept the input x, the ith symbol of
the configuration at time s is not (q+a). The following holds for all
j: if, in the jth iteration of the loop, Player ∃ chooses a−1, a0, a1, then

Algorithm 5.4. Alternating simulation of a determinisitc computation

existentially guess s ≤ T2(n) = t
existentially guess i ∈ {0, . . . , s}
existentially guess (q+a) ∈ Q+

acc × Σ
b := (q+a)
for j = 1, . . . , s do

existentially guess (a−1, a0, a1) ∈ Γ3

if fM(a−1, a0, a1) ̸= b then reject
universally choose k ∈ {−1, 0, 1}
b := ak
i := i + k

endfor
if the i-th symbol of the input configuration of M on x equals b then accept
else reject
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5 Alternating Complexity Classes

either f (a−1, a0, a1) ̸= b, in which case Player ∃ loses immediately, or
there is at least one k ∈ {−1, 0, 1} such that the (i + k)th symbol of the
configuration at time s− j differs from ak. Player ∀ then chooses exactly
this k. At the end, ak will then be different from the ith symbol of the
input configuration, so Player ∀ wins.

Hence A accepts x if, and only if, M does so. q.e.d.

In particular, it follows that

• ALogspace = Ptime;
• APspace = Exptime.

The relationship between the major deterministic and alternating
complexity classes is summarised in Fig. 5.1.

Logspace ⊆ Ptime ⊆ Pspace ⊆ Exptime ⊆ Expspace
|| || || ||

ALogspace ⊆ APtime ⊆ APspace ⊆ AExptime

Figure 5.1. Relationship between deterministic and alternating complexity
classes

5.3 Alternating Logarithmic Time

For time bounds T(n) < n, the standard model of alternating Turing
machines needs to be modified a little by an indirect access mecha-
nism. The machine writes down, in binary, an address i on an sep-
arate index tape to access the ith symbol of the input. Using this
model, it makes sense to define, for instance, the complexity class
ALogtime = Atime(O(log n)).

Important examples of problems in ALogtime are

• the model-checking problem for propositional logic;
• the data complexity of first-order logic.

The results mentioned above relating alternating time and sequen-
tial space hold also for logarithmic time and space bounds. Note,
however, that these do not imply that ALogtime = Logspace, owing to
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5.3 Alternating Logarithmic Time

the quadratic overheads. It is known that ALogtime ⊆ Logspace, but
the converse inclusion is an open problem.

Exercise 5.1. Construct an ALogtime algorithm for the set of palin-
dromes (i.e., words that are same when read from right to left and from
left to right).
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