Complexity Theory
WS 2009/10

Prof. Dr. Erich Gradel

Mathematische Grundlagen der Informatik
RWTH Aachen

Contents

1 Deterministic Turing Machines and Complexity Classes

1.1 Turing machines
1.2 Time and space complexity classes
1.3 Speed-up and space compression

©@®S6

This work is licensed under:

http:/ /creativecommons.org/licenses/by-nc-nd/3.0/de/
Dieses Werk ist lizensiert uter:

http:/ /creativecommons.org/licenses /by-nc-nd/3.0/de/

© 2009 Mathematische Grundlagen der Informatik, RWTH Aachen.

http:/ /www.logic.rwth-aachen.de

14 The Gap Theorem

1.5

2

21
22
23

3

3.1
3.2
3.3
3.4
3.5

4

4.1
42
4.3

5

5.1
52
53

The Hierarchy Theorems

Nondeterministic complexity classes

Nondeterministic Turing machines
Elementary properties of nondeterministic classes
The Theorem of Immerman and Szelepcsényi

Completeness

Reductions.
NP-complete problems: SAT and variants
P-complete problems
NLoGsPACE-complete problems
A PspAce-complete problem

Oracles and the polynomial hierarchy

Oracle Turing machines
The polynomial hierarchy
Relativisations

Alternating Complexity Classes

Complexity Classes
Alternating Versus Deterministic Complexity
Alternating Logarithmic Time

O I B = =

17
17
19
21

27
27
28
34
38
42

47
47
49
52

6 Complexity Theory for Probabilistic Algorithms 63

6.1 Examples of probabilistic algorithms 63
6.2 Probabilistic complexity classes and Turing machines 72
6.3 Probabilistic proof systems and Arthur-Merlin games 81

5 Alternating Complexity Classes

Alternating algorithms are a generalization of non-deterministic al-
gorithms based on two-player games. Indeed, one can view non-
deterministic algorithms as the restriction of alternating algorithms
to solitaire (i.e., one-player) games. Since complexity classes are mostly
defined in terms of Turing machines, we focus on the model of alter-
nating Turing machines. But note that alternating algorithms can be
defined in terms of other computational models, also.

Definition 5.1. An alternating Turing machine is a non-deterministic
Turing machine whose state set Q is divided into four classes Qg,
Qv , Qacc, and Qyj. This means that there are existential, universal,
accepting and rejecting states. States in Qqcc U Qe are final states. A
configuration of M is called existential, universal, accepting, or rejecting
according to its state.

The computation graph Gy, of an alternating Turing machine M
for an input x is defined in the same way as for a non-deterministic
Turing machine. Nodes are configurations (instantaneous descriptions)
of M, there is a distinguished starting node Cy(x) which is the input
configuration of M for input x, and there is an edge from configuration
C to configuration C' if, and only if, C’' is a successor configuration
of C. Recall that for non-deterministic Turing machines, the acceptance
condition is given by the reachability problem: M accepts x if, and
only if, in the graph Gy, some accepting configuration C, is reachable
from Cy(x). For alternating Turing machines, acceptance is defined by
the GAME problem (see Sect. 3.3): the players here are called 3 and V,
where 3 moves from existential configurations and V from universal
ones. Further, 3 wins at accepting configurations and loses at rejecting
ones. By definition, M accepts x if, and only if, Player 3 has a winning
strategy from Cp(x) for the game on Gy y.

55

5.1 Complexity Classes

When considering the computation tree €, ,, which corresponds
to the unraveling of the configuration graph from Cy(x), we call a
subtree T accepting if 3 has a winning strategy from C.

5.1 Complexity Classes

Time and space complexity are defined as for nondeterministic Turing
machines. For a function F : N — IR, we say that an alternating Turing
machine M is F-time-bounded if for all inputs x, all computation paths
from Cy(x) terminate after at most F(|x|) steps. Similarly, M is F-space-
bounded if no configuration of M that is reachable from Cy(x) uses
more than F(|x]|) cells of work space. The complexity classes ATIME(F)
and Asrack(F) contain all problems that are decidable by, respectively,
F-time bounded and F-space bounded alternating Turing machines.

The following classes are of particular interest:

¢ ALocsrace = Aspacie(O(logn)),
o APTIME = | o ATIME (%),
o APSPACE = (Jzen ASPACE(nf).
Example 5.2. @BF € ATIME(O(n)). We assume that, without loss of

generality, negations appear only in front of variables. An alternating
version of Eval(¢,J) is the following:

Algorithm 5.1. Alternating Eval(y, J)

Input: (,J) where ¢ € @BF und J: free(y) — {0,1}
if p =Y then
if J(Y) = 1 then accept else reject
endif
if p = @1 V ¢ then “3” guesses i € {1,2}; return Eval(¢;, J)
if = @1 A ¢ then “V” chooses i € {1,2}; return Eval(¢;,J)
if p =3X¢ then “3” guesses j € {0,1}; return Eval(¢, I[X = j])
if p =VX¢p then “V” choosesj € {0,1}; return Eval(¢, J[X = j])

56

5 Alternating Complexity Classes

5.2 Alternating Versus Deterministic Complexity

There is a general slogan that parallel time complexity coincides with
sequential space complexity.

Theorem 5.3. Let S(n) be space-constructible with S(n) > n. Then,
Nspaci(S) C ATimE(S?).

Proof. We use the same trick as in the proof of Savitch’s Theorem: Let
L be decided by a nondeterministic Turing machine M with space
bounded by S(1) and in time 2¢5("). Let Conf[S(n)] be the set of
configurations of M with space < S(n). The alternating algorithm
Reach(Cy, Cy, t) (Algorithm 5.2) decides whether the configuration C; €
Conf[S(n)] can be reached from configuration C; € Conf[S(n)] in at
most 2! steps. The algorithm is correct because C; is reachable from Cy
in at most 2¢ steps if there is some C such that Reach(Cy,C,t — 1) and
Reach(C, Cy, t — 1) accept.

Let f(t) = maxcl,CzeConf[s(n)]timeReaCh(leCZf t). Furthermore,
f(0) =0(S(n)) and for all t > 0, f(t) = O(S(n)) + f(t — 1). Hence,

f(t) = (£+1)-O(S(n)).

L can then be decided as follows: At first, for an input x, the input
configuration Cy of M on x is constructed. Then, some accepting final
configuration C, of M is guessed. We will accept if Reach(Cy, Cq, S(1))

Algorithm 5.2. Reach(Cy, Cy, t)

Input: C1,C, t
if t = 0 then
if C; = Gy or C; € Next(Cyp) then accept else reject
else /x t>0 */
existentially guess C € Conf[S(n)]
universally choose (Dy,D;) = (Cy,C) and (D1, D;) = (C,Cy)
Reach(Dl, Dz, t— 1)
endif

57

5.2 Alternating Versus Deterministic Complexity

accepts. This algorithm needs
(c-S(n) +1)0(S(n)) = O(8*(n))

steps. By the linear Speed-Up Theorem, which also applies to alternat-
ing Turing machines, L € ATiME(S?). Q.E.D.

Theorem 5.4. Let T be space-constructible and T(n) > n. Then,
AtimE(T) C Dspace(T?).

Proof. Let L € ATIME(T) and M be some alternating Turing machine
accepting L in time bounded by T(n). Then, there is some r so that
for all configurations C of M: |Next(C)| < r. Algorithm 5.3, Ar,
computes whether or not the subtree T is accepting (output 1) or
rejecting (output 0) for every configuration C in Ty ,.

Obviously, this algorithm is working correctly. A7(Cy(x)) decides
whether M accepts x and, hence, is a deterministic decision procedure
for L.

Algorithm 5.3. Ar, deterministic evaluation of T¢

Input: C
if C accepting then output 1
if C rejecting then output 0
if C existential then
fori=1,...,rdo
compute i-th successor configuration C; of C
if F(C;) = 1 then output 1
endfor
output 0
endif
if C universal then
fori=1,...,rdo
compute i-th successor configuration C; of C
if F(C;) = 0 then output 0
endfor
output 1
endif

58

5 Alternating Complexity Classes

How much space does this algorithm need? Let C be some node
of height t in Ty 4, i.e., all computations of M rooted at C need at most
t steps. Then:

0 ift=0
spaceAT(C) = .
maxc,een(c) (1Cil + space 4, () 150
Since C; € Next(C) is of height f — 1, we obtain space 4 (C) <t T(n)
and therefore space 4 (C,) < T2(n). Q.E.D.

In particular, we obtain

Theorem 5.5 (Parallel time complexity = sequential space complexity).

o APTIME = PSPACE.
o AEXPTIME = EXPSPACE.

Proof.

o Armme(n?) C Dspace(n??) C Pspack,
Dspacg(n?) C Nspace(n?) C Atime(n2?) C APTIME.
. ATIME(Z”A) - DSPACE(Zznd) C EXPSPACE,
DSPACE(an) C ATIME(zznd) C AEXPTIME. Q.E.D.

On the other hand, alternating space complexity corresponds to
exponential deterministic time complexity.

Theorem 5.6. For any space-constructible function S(n) > logn, we
have that Aspaci(S) = Drime(2009).

Proof. The proof is closely associated with the GAME problem. For any
S-space-bounded alternating Turing machine M, one can, given an
input x, construct the computation graph Gy, in time 20(5(1¥) and
then solve the GAME problem in order to decide the acceptance of x
by M.

For the converse, we shall show that for any T(n) > n and any
constant ¢, DTIME(T) C Aspace(c - log T).

Let L € DTME(T). Then there is a deterministic one-tape Turing
machine M that decides L in time T2. Let T = XU (Q x) U {*} and

59

5.2 Alternating Versus Deterministic Complexity

t = G?(n). Every configuration C = (g,i,w) (in a computation on some
input of length 1) can be described by a word
C=*wpy... wi_l(qwi)wiH LWk € Ft+2.

The ith symbol of the successor configuration depends only on the

symbols at positions i — 1, i, and i + 1. Hence, there is a function fjs :

I® — T such that, whenever symbols a_1, ap, and a; are at positions
i—1,iand i+ 1 of some configuration ¢, the symbol fy(a_1,a9,a1) will
be at position i of the successor configuration ¢’.

The alternating algorithm A (Algorithm 5.4) decides L using space
O(log T(n)). If M accepts the input x, then Player 3 has the following
winning strategy for the game on C 4 ,: the value chosen for s is the time
at which M accepts x, and (q"a), i are chosen so that the configuration
of M at time s is of the form *wy ... w; 1(g*a)w;yq ... wrx. At the jth
iteration of the loop (that is, at configuration s — j), the symbols at
positions i —1,7,i + 1 of the configuration of M at time s — j are chosen
fora_q,ap,a1.

Conversely, if M does not accept the input x, the ith symbol of
the configuration at time s is not (g7a). The following holds for all
j: if, in the jth iteration of the loop, Player 3 chooses a_1, 4,41, then

Algorithm 5.4. Alternating simulation of a determinisitc computation

existentially guess s < T?(n) =t
existentially guess i € {0,...,s}
existentially guess (47a) € Qf, x &
b:=(q"a)
forj=1,...,sdo
existentially guess (a_1,a9,a1) € T
if far(a_1,a0,a1) # b then reject
universally choose k € {—1,0,1}

b:= ay
i:=i+k
endfor

if the i-th symbol of the input configuration of M on x equals b then accept
else reject

60

5 Alternating Complexity Classes

either f(a_q,a0,a1) # b, in which case Player 3 loses immediately, or
there is at least one k € {—1,0,1} such that the (i 4 k)th symbol of the
configuration at time s — j differs from a;. Player V then chooses exactly
this k. At the end, a; will then be different from the ith symbol of the
input configuration, so Player V wins.

Hence A accepts x if, and only if, M does so. Q.E.D.

In particular, it follows that

e ALOGSPACE = PTIME;
e APsPACE = EXPTIME.

The relationship between the major deterministic and alternating
complexity classes is summarised in Fig. 5.1.

Logsrace C PTIME C Pspace C ExpriME C EXPSPACE

ALoGgsPacE C APTIME C APspPACE C AEXPTIME

Figure 5.1. Relationship between deterministic and alternating complexity
classes

5.3 Alternating Logarithmic Time

For time bounds T(n) < n, the standard model of alternating Turing
machines needs to be modified a little by an indirect access mecha-
nism. The machine writes down, in binary, an address i on an sep-
arate index tape to access the ith symbol of the input. Using this
model, it makes sense to define, for instance, the complexity class
ALocrIME = ATIME(O(logn)).

Important examples of problems in ALOGTIME are

¢ the model-checking problem for propositional logic;
¢ the data complexity of first-order logic.

The results mentioned above relating alternating time and sequen-
tial space hold also for logarithmic time and space bounds. Note,
however, that these do not imply that ALOGTIME = LOGSPACE, owing to

61

5.3 Alternating Logarithmic Time

the quadratic overheads. It is known that ALoGTIME C LoGSPACE, but

the converse inclusion is an open problem.

Exercise 5.1. Construct an ALOGTIME algorithm for the set of palin-
dromes (i.e., words that are same when read from right to left and from
left to right).

62

