
Complexity Theory
WS 2009/10

Prof. Dr. Erich Grädel

Mathematische Grundlagen der Informatik
RWTH Aachen

cbnd
This work is licensed under:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/
Dieses Werk ist lizensiert uter:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

© 2009 Mathematische Grundlagen der Informatik, RWTH Aachen.
http://www.logic.rwth-aachen.de

Contents

1 Deterministic Turing Machines and Complexity Classes 1
1.1 Turing machines . 1
1.2 Time and space complexity classes 4
1.3 Speed-up and space compression 7
1.4 The Gap Theorem . 9
1.5 The Hierarchy Theorems . 11

2 Nondeterministic complexity classes 17
2.1 Nondeterministic Turing machines 17
2.2 Elementary properties of nondeterministic classes 19
2.3 The Theorem of Immerman and Szelepcsényi 21

3 Completeness 27
3.1 Reductions . 27
3.2 NP-complete problems: Sat and variants 28
3.3 P-complete problems . 34
3.4 NLogspace-complete problems 38
3.5 A Pspace-complete problem 42

4 Oracles and the polynomial hierarchy 47
4.1 Oracle Turing machines . 47
4.2 The polynomial hierarchy . 49
4.3 Relativisations . 52

5 Alternating Complexity Classes 55
5.1 Complexity Classes . 56
5.2 Alternating Versus Deterministic Complexity 57
5.3 Alternating Logarithmic Time 61

6 Complexity Theory for Probabilistic Algorithms 63
6.1 Examples of probabilistic algorithms 63
6.2 Probabilistic complexity classes and Turing machines 72
6.3 Probabilistic proof systems and Arthur-Merlin games 81

5 Alternating Complexity Classes

Alternating algorithms are a generalization of non-deterministic al-
gorithms based on two-player games. Indeed, one can view non-
deterministic algorithms as the restriction of alternating algorithms
to solitaire (i.e., one-player) games. Since complexity classes are mostly
defined in terms of Turing machines, we focus on the model of alter-
nating Turing machines. But note that alternating algorithms can be
defined in terms of other computational models, also.

Definition 5.1. An alternating Turing machine is a non-deterministic
Turing machine whose state set Q is divided into four classes Q∃ ,
Q∀ , Qacc , and Qrej. This means that there are existential, universal,
accepting and rejecting states. States in Qacc ∪ Qrej are final states. A
configuration of M is called existential, universal, accepting, or rejecting
according to its state.

The computation graph GM,x of an alternating Turing machine M
for an input x is defined in the same way as for a non-deterministic
Turing machine. Nodes are configurations (instantaneous descriptions)
of M, there is a distinguished starting node C0(x) which is the input
configuration of M for input x, and there is an edge from configuration
C to configuration C′ if, and only if, C′ is a successor configuration
of C. Recall that for non-deterministic Turing machines, the acceptance
condition is given by the reachability problem: M accepts x if, and
only if, in the graph GM,x some accepting configuration Ca is reachable
from C0(x). For alternating Turing machines, acceptance is defined by
the game problem (see Sect. 3.3): the players here are called ∃ and ∀,
where ∃ moves from existential configurations and ∀ from universal
ones. Further, ∃ wins at accepting configurations and loses at rejecting
ones. By definition, M accepts x if, and only if, Player ∃ has a winning
strategy from C0(x) for the game on GM,x.

55

5.1 Complexity Classes

When considering the computation tree TM,x, which corresponds
to the unraveling of the configuration graph from C0(x), we call a
subtree TC accepting if ∃ has a winning strategy from C.

5.1 Complexity Classes

Time and space complexity are defined as for nondeterministic Turing
machines. For a function F : N → R, we say that an alternating Turing
machine M is F-time-bounded if for all inputs x, all computation paths
from C0(x) terminate after at most F(|x|) steps. Similarly, M is F-space-
bounded if no configuration of M that is reachable from C0(x) uses
more than F(|x|) cells of work space. The complexity classes Atime(F)
and Aspace(F) contain all problems that are decidable by, respectively,
F-time bounded and F-space bounded alternating Turing machines.

The following classes are of particular interest:

• ALogspace = Aspace(O(log n)),

• APtime =
⋃

d∈N Atime(nd),

• APspace =
⋃

d∈N Aspace(nd).

Example 5.2. qbf ∈ Atime(O(n)). We assume that, without loss of
generality, negations appear only in front of variables. An alternating
version of Eval(ψ, I) is the following:

Algorithm 5.1. Alternating Eval(ψ, I)

Input: (ψ, I) where ψ ∈ qbf und I : free(ψ) → {0, 1}
if ψ = Y then

if I(Y) = 1 then accept else reject
endif
if ψ = ϕ1 ∨ ϕ2 then “∃” guesses i ∈ {1, 2}; return Eval(ϕi, I)
if ψ = ϕ1 ∧ ϕ2 then “∀” chooses i ∈ {1, 2}; return Eval(ϕi, I)
if ψ = ∃Xϕ then “∃” guesses j ∈ {0, 1}; return Eval(ϕ, I[X = j])
if ψ = ∀Xϕ then “∀” chooses j ∈ {0, 1}; return Eval(ϕ, I[X = j])

56

5 Alternating Complexity Classes

5.2 Alternating Versus Deterministic Complexity

There is a general slogan that parallel time complexity coincides with
sequential space complexity.

Theorem 5.3. Let S(n) be space-constructible with S(n) ≥ n. Then,

Nspace(S) ⊆ Atime(S2).

Proof. We use the same trick as in the proof of Savitch’s Theorem: Let
L be decided by a nondeterministic Turing machine M with space
bounded by S(n) and in time 2c·S(n). Let Conf[S(n)] be the set of
configurations of M with space ≤ S(n). The alternating algorithm
Reach(C1, C2, t) (Algorithm 5.2) decides whether the configuration C2 ∈
Conf[S(n)] can be reached from configuration C1 ∈ Conf[S(n)] in at
most 2t steps. The algorithm is correct because C2 is reachable from C1

in at most 2t steps if there is some C such that Reach(C1, C, t− 1) and
Reach(C, C2, t− 1) accept.

Let f (t) = maxC1,C2∈Conf[S(n)] timeReach(C1, C2, t). Furthermore,
f (0) = O(S(n)) and for all t > 0, f (t) = O(S(n)) + f (t− 1). Hence,

f (t) = (t + 1) ·O(S(n)).

L can then be decided as follows: At first, for an input x, the input
configuration C0 of M on x is constructed. Then, some accepting final
configuration Ca of M is guessed. We will accept if Reach(C0, Ca, S(n))

Algorithm 5.2. Reach(C1, C2, t)

Input: C1, C2, t
if t = 0 then

if C1 = C2 or C2 ∈ Next(C1) then accept else reject
else /* t > 0 */

existentially guess C ∈ Conf[S(n)]
universally choose (D1, D2) = (C1, C) and (D1, D2) = (C, C2)
Reach(D1, D2, t− 1)

endif

57

5.2 Alternating Versus Deterministic Complexity

accepts. This algorithm needs

(c · S(n) + 1)O(S(n)) = O(S2(n))

steps. By the linear Speed-Up Theorem, which also applies to alternat-
ing Turing machines, L ∈ Atime(S2). q.e.d.

Theorem 5.4. Let T be space-constructible and T(n) ≥ n. Then,
Atime(T) ⊆ Dspace(T2).

Proof. Let L ∈ Atime(T) and M be some alternating Turing machine
accepting L in time bounded by T(n). Then, there is some r so that
for all configurations C of M: |Next(C)| ≤ r. Algorithm 5.3, AT ,
computes whether or not the subtree TC is accepting (output 1) or
rejecting (output 0) for every configuration C in TM,x.

Obviously, this algorithm is working correctly. AT(C0(x)) decides
whether M accepts x and, hence, is a deterministic decision procedure
for L.

Algorithm 5.3. AT , deterministic evaluation of TC

Input: C
if C accepting then output 1
if C rejecting then output 0
if C existential then

for i = 1, . . . , r do
compute i-th successor configuration Ci of C
if F(Ci) = 1 then output 1

endfor
output 0

endif
if C universal then

for i = 1, . . . , r do
compute i-th successor configuration Ci of C
if F(Ci) = 0 then output 0

endfor
output 1

endif

58

5 Alternating Complexity Classes

How much space does this algorithm need? Let C be some node
of height t in TM,x, i.e., all computations of M rooted at C need at most
t steps. Then:

spaceAT
(C) =

0 if t = 0

maxCi∈Next(C)(|Ci|+ spaceAT
(Ci)) if t > 0 .

Since Ci ∈ Next(C) is of height t− 1, we obtain spaceAT
(C) ≤ t · T(n)

and therefore spaceAT
(Co) ≤ T2(n). q.e.d.

In particular, we obtain

Theorem 5.5 (Parallel time complexity = sequential space complexity).

• APtime = Pspace.
• AExptime = Expspace.

Proof.

• Atime(nd) ⊆ Dspace(n2d) ⊆ Pspace,
Dspace(nd) ⊆ Nspace(nd) ⊆ Atime(n2d) ⊆ APtime.

• Atime(2nd
) ⊆ Dspace(22nd

) ⊆ Expspace,
Dspace(2nd

) ⊆ Atime(22nd
) ⊆ AExptime. q.e.d.

On the other hand, alternating space complexity corresponds to
exponential deterministic time complexity.

Theorem 5.6. For any space-constructible function S(n) ≥ log n, we
have that Aspace(S) = Dtime(2O(S)).

Proof. The proof is closely associated with the game problem. For any
S-space-bounded alternating Turing machine M, one can, given an
input x, construct the computation graph GM,x in time 2O(S(|x|) and
then solve the game problem in order to decide the acceptance of x
by M.

For the converse, we shall show that for any T(n) ≥ n and any
constant c, Dtime(T) ⊆ Aspace(c · log T).

Let L ∈ Dtime(T). Then there is a deterministic one-tape Turing
machine M that decides L in time T2. Let Γ = Σ ∪ (Q× Σ) ∪ {∗} and

59

5.2 Alternating Versus Deterministic Complexity

t = G2(n). Every configuration C = (q, i, w) (in a computation on some
input of length n) can be described by a word

c = ∗w0 . . . wi−1(qwi)wi+1 . . . wt∗ ∈ Γt+2.

The ith symbol of the successor configuration depends only on the
symbols at positions i− 1, i, and i + 1. Hence, there is a function fM :
Γ3 → Γ such that, whenever symbols a−1, a0, and a1 are at positions
i− 1, i and i + 1 of some configuration c, the symbol fM(a−1, a0, a1) will
be at position i of the successor configuration c′.

The alternating algorithm A (Algorithm 5.4) decides L using space
O(log T(n)). If M accepts the input x, then Player ∃ has the following
winning strategy for the game on CA,x: the value chosen for s is the time
at which M accepts x, and (q+a), i are chosen so that the configuration
of M at time s is of the form ∗w0 . . . wi−1(q+a)wi+1 . . . wt∗. At the jth
iteration of the loop (that is, at configuration s − j), the symbols at
positions i− 1, i, i + 1 of the configuration of M at time s− j are chosen
for a−1, a0, a1.

Conversely, if M does not accept the input x, the ith symbol of
the configuration at time s is not (q+a). The following holds for all
j: if, in the jth iteration of the loop, Player ∃ chooses a−1, a0, a1, then

Algorithm 5.4. Alternating simulation of a determinisitc computation

existentially guess s ≤ T2(n) = t
existentially guess i ∈ {0, . . . , s}
existentially guess (q+a) ∈ Q+

acc × Σ
b := (q+a)
for j = 1, . . . , s do

existentially guess (a−1, a0, a1) ∈ Γ3

if fM(a−1, a0, a1) ̸= b then reject
universally choose k ∈ {−1, 0, 1}
b := ak
i := i + k

endfor
if the i-th symbol of the input configuration of M on x equals b then accept
else reject

60

5 Alternating Complexity Classes

either f (a−1, a0, a1) ̸= b, in which case Player ∃ loses immediately, or
there is at least one k ∈ {−1, 0, 1} such that the (i + k)th symbol of the
configuration at time s− j differs from ak. Player ∀ then chooses exactly
this k. At the end, ak will then be different from the ith symbol of the
input configuration, so Player ∀ wins.

Hence A accepts x if, and only if, M does so. q.e.d.

In particular, it follows that

• ALogspace = Ptime;
• APspace = Exptime.

The relationship between the major deterministic and alternating
complexity classes is summarised in Fig. 5.1.

Logspace ⊆ Ptime ⊆ Pspace ⊆ Exptime ⊆ Expspace
|| || || ||

ALogspace ⊆ APtime ⊆ APspace ⊆ AExptime

Figure 5.1. Relationship between deterministic and alternating complexity
classes

5.3 Alternating Logarithmic Time

For time bounds T(n) < n, the standard model of alternating Turing
machines needs to be modified a little by an indirect access mecha-
nism. The machine writes down, in binary, an address i on an sep-
arate index tape to access the ith symbol of the input. Using this
model, it makes sense to define, for instance, the complexity class
ALogtime = Atime(O(log n)).

Important examples of problems in ALogtime are

• the model-checking problem for propositional logic;
• the data complexity of first-order logic.

The results mentioned above relating alternating time and sequen-
tial space hold also for logarithmic time and space bounds. Note,
however, that these do not imply that ALogtime = Logspace, owing to

61

5.3 Alternating Logarithmic Time

the quadratic overheads. It is known that ALogtime ⊆ Logspace, but
the converse inclusion is an open problem.

Exercise 5.1. Construct an ALogtime algorithm for the set of palin-
dromes (i.e., words that are same when read from right to left and from
left to right).

62

