
Complexity Theory
WS 2009/10

Prof. Dr. Erich Grädel

Mathematische Grundlagen der Informatik
RWTH Aachen

cbnd
This work is licensed under:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/
Dieses Werk ist lizensiert uter:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

© 2009 Mathematische Grundlagen der Informatik, RWTH Aachen.
http://www.logic.rwth-aachen.de

Contents

1 Deterministic Turing Machines and Complexity Classes 1
1.1 Turing machines . 1
1.2 Time and space complexity classes 4
1.3 Speed-up and space compression 7
1.4 The Gap Theorem . 9
1.5 The Hierarchy Theorems . 11

2 Nondeterministic complexity classes 17
2.1 Nondeterministic Turing machines 17
2.2 Elementary properties of nondeterministic classes 19
2.3 The Theorem of Immerman and Szelepcsényi 21

3 Completeness 27
3.1 Reductions . 27
3.2 NP-complete problems: Sat and variants 28
3.3 P-complete problems . 34
3.4 NLogspace-complete problems 38
3.5 A Pspace-complete problem 42

4 Oracles and the polynomial hierarchy 47
4.1 Oracle Turing machines . 47
4.2 The polynomial hierarchy . 49
4.3 Relativisations . 52

5 Alternating Complexity Classes 55
5.1 Complexity Classes . 56
5.2 Alternating Versus Deterministic Complexity 57
5.3 Alternating Logarithmic Time 61

6 Complexity Theory for Probabilistic Algorithms 63
6.1 Examples of probabilistic algorithms 63
6.2 Probabilistic complexity classes and Turing machines 72
6.3 Probabilistic proof systems and Arthur-Merlin games 81

3 Completeness

3.1 Reductions

Definition 3.1. Let A ⊆ Σ∗, B ⊆ Γ∗ be two languages. A function
f : Σ∗ → Γ∗ is called a reduction from A to B if, for all x ∈ Σ∗, x ∈ A ⇔
f (x) ∈ B. To put it differently: If f (A) ⊆ B and f (Ā) = f (Σ∗ \ A) ⊆
(Γ∗ \ B) = B̄. Hence, a reduction from A to B is also a reduction from
Ā to B̄.

Let C be a complexity class (of decision problems). A class of
functions F provides an appropriate notion of reducibility for C if

• F is closed under composition, i.e.,

if f : Σ∗ → Γ∗ ∈ F
and g : Γ∗ → ∆∗ ∈ F ,

then g ◦ f : Σ∗ → ∆∗ ∈ F .

• C is closed under F : If B ∈ C and f ∈ F is a reduction from A to
B, then A ∈ C.

For two problems A, B we say that A is F -deducible to B if there
is a function f ∈ F that is a reduction from A to B.

Notation: A ≤F B.

Definition 3.2. A problem B is C-hard under F if all problems A ∈ C
are F -reducible to B (A ∈ C ⇒ A ≤F B).

A problem B is C-complete (under F) if B ∈ C and B is C-hard
(under F).

The most important notions of reducibility in complexity theory
are

27

3.2 NP-complete problems: Sat and variants

• ≤p: polynomial-time reducibility (given by the class of all
polynomial-time computable functions)

• ≤log: log-space reducibility (given by the class of functions com-
putable with logarithmic space)

Closure under composition for polynomial-time reductions is easy
to show. If

f : Σ∗ → Γ∗ is computable in time O(nk) by M f and

g : Γ∗ → ∆∗ is computable in time O(nm) by Mg,

then there are constants c, d such that g ◦ f : Σ∗ → ∆∗ is computable in
time c · nk + d(c · nk)m = O(nk+m) by a machine that writes the output
of M f (whose length is bounded by c · nk) to a working tape and use it
as the input for Mg.

In case of log-space reductions this trivial composition does not
work since f (x) can have polynomial length in |x| and hence cannot be
completely written to the logarithmically bounded work tape. However,
we can use a modified machine M′

f that computes, for an input x and
a position i, the i-th symbol of the output f (x). Thus, g(f (x)) can be
computed by simulating Mg, such that whenever it accesses the i-th
symbol of the input, M′

f is called to compute it. The computation
of M′

f on (x, i) can be done in logarithmic space (space needed for

computation and for the counter i: log(nk)) the symbol f (x, i) written
to the tape needs only constant space. Furthermore, the computation of
Mg only needs space logarithmic in the input length as c · log(| f (x)|) =
c · log(|x|k) = c · k · log(|x|) = O(log(|x|)).

3.2 NP-complete problems: Sat and variants

NP can be defined as the class of problems decidable in nondeterministic
polynomial time:

Definition 3.3. NP =
⋃

d∈N Ntime(nd).

A different, in some sense more instructive, definition of NP is the
class of problems with polynomially-time verifiable solutions:

28

3 Completeness

Definition 3.4. A ∈ NP if, and only if, there is a problem B ∈ P and a
polynomial p such that A = {x : ∃y(|y| ≤ p(|x|) ∧ x#y ∈ B)}.

The two definitions coincide: If A has polynomially verifiable
solutions via B ∈ P and a polynomial p, then the following algorithm
decides A in nondeterministic polynomial time:

Input: x
guess y with |y| < p(n)
check whether x#y ∈ B
if answer is yes then accept else reject

Conversely, let A ∈ Ntime(p(n)), and M be a p-time bounded
NTM that decides A. A computation of M on some input of length n is
a sequence of at most p(n) configurations of length ≤ p(n). Therefore, a
computation of M can be described by a p(n)× p(n) table with entries
from Q× Σ ∪ Σ and thus by a word of length p2(n). Set

B = {x#y : y accepting computation of M on x}.

We can easily see that B ∈ P, and x ∈ L if, and only if, there exists y
with |y| ≤ p2(n) such that x#y ∈ B. Therefore, L ∈ NP.

Theorem 3.5.

(i) P ⊆ NP.
(ii) A ≤p B, B ∈ NP ⇒ A ∈ NP.

Clearly NP is closed under polynomial-time reductions:

B ∈ NP, A ≤p B =⇒ A ∈ NP.

B is NP-complete if

(1) B ∈ NP and
(2) A ≤p B for all A ∈ NP.

The most important open problem in complexity theory is Cook’s
hypothesis: P ̸= NP.

29

3.2 NP-complete problems: Sat and variants

For every NP-complete problem B we have:

P ̸= NP ⇐⇒ B ̸∈ P.

We recall the basics of propositional logic. Let τ = {Xi : i ∈ N} be
a finite set of propositional variables. The set AL of propositional logic
formulae is defined inductively:

(1) 0, 1 ∈ PL (the Boolean constants are formulae).
(2) τ ⊆ PL (every propositional variable is a formula).
(3) If ψ, ϕ ∈ PL, then also ¬ψ, (ψ ∧ ϕ), (ψ ∨ ϕ) and (ψ → ϕ) are

formulae in PL.

A (propositional) interpretation is a map I : σ → {0, 1} for some σ ⊆
τ. It is suitable for a formula ψ ∈ PL if τ(ψ) ⊆ σ. Every interpretation
I that is suitable to ψ defines a logical value [[ψ]]I ∈ {0, 1} with the
following definitions:

(1) [[0]]I := 0, [[1]]I := 1.
(2) [[X]]I := I(X) for X ∈ σ.
(3) [[¬ψ]]I := 1− [[ψ]]I.
(4) [[ψ ∧ ϕ]]I := min([[ψ]]I, [[ϕ]]I).
(5) [[ψ ∨ ϕ]]I := max([[ψ]]I, [[ϕ]]I).
(6) [[ψ → ϕ]]I := [[¬ψ ∨ ϕ]]I.

A model of a formula ψ ∈ PL is an interpretation I with [[ψ]]I = 1.
Instead of [[ψ]]I = 1, we will write I |= ψ and say I satisfies ψ. A
formula ψ is called satisfiable if a model for ψ exists. A formula ψ is
called a tautology if every suitable interpretation for ψ is a model of ψ.

A formula ψ is obviously satisfiable iff ¬ψ is not a tautology. Two
formulae ψ and ϕ are called equivalent (ψ ≡ ϕ) if, for each I : τ(ψ) ∪
τ(ϕ) → {0, 1}, we have [[ψ]]I = [[ϕ]]I. A formula ϕ follows from ψ

(short, ψ |= ϕ) if, for every interpretation I : τ(ψ) ∪ τ(ϕ) → {0, 1} with
I(ψ) = 1, I(ϕ) = 1 holds as well.

Comments. Usually, we omit unnecessary parentheses. As ∧ and ∨
are semantically associative, we can use the following notations for
conjunctions and disjunctions over {ψi : i ∈ I}:

∧
i∈I ψi respectively∨

i∈I ψi. We fix the set of variables τ = {Xi : i ∈ N} and encode Xi

30

3 Completeness

by X(bin i), i.e., a symbol X followed by the binary representation of
the index i. This enables us to encode propositional logic formulae as
words over a finite alphabet Σ = {X, 0, 1,∧,∨,¬, (,)}.

Definition 3.6. sat := {ψ ∈ PL : ψ is satisfiable}.

Theorem 3.7 (Cook, Levin). sat is NP-complete.

Proof. It is clear that sat is in NP because

{ψ#I | I : τ(ψ) → {0, 1}, I |= ψ} ∈ P.

Let A be some problem contained NP. We show that A ≤p sat.
Let M = (Q, Σ, q0, F, δ) be a nondeterministic 1-tape Turing machine
deciding A in polynomial time p(n) with F = F+ ∪ F−. We assume
that every computation of M ends in either an accepting or rejecting
final configuration, i.e., C is a final configuration iff Next(C) = ∅. Let
w = w0 · · ·wn−1 be some input for M. We build a formula ψw ∈ PL
that is satisfiable iff M accepts the input w.

Towards this, let ψw contain the following propositional variables:

• Xq,t for q ∈ Q, 0 ≤ t ≤ p(n),
• Ya,i,t for a ∈ Σ, 0 ≤ i, t ≤ p(n),
• Zi,t for 0 ≤ i, t ≤ p(n),

with the following intended meaning:

• Xq,t : “at time t, M is in state q,”
• Ya,i,t : “at time t, the symbol a is written on field i,”
• Zi,t : “at time t, M is at position i.”

Finally,

ψw := start∧ compute∧ end

with

start := Xq0,0 ∧
n−1∧
i=0

Ywi ,i,0 ∧
p(n)∧
i=n

Y�,i,0 ∧ Z0,0

compute := nochange∧ change

31

3.2 NP-complete problems: Sat and variants

nochange :=
∧

t<p(n),a∈Σ,i ̸=j

(Zi,t ∧Ya,j,t → Ya,j,t+1)

change :=
∧

t<p(n),i,a,q

(
(Xq,t ∧Ya,i,t ∧ Zi,t) →

∨
(q′ ,b,m)∈δ(q,a)
0≤i+m≤p(n)

(Xq′ ,t+1 ∧Yb,i,t+1 ∧ Zi+m,t+1)
)

end :=
∧

t≤p(n),q∈F−
¬Xq,t

Here, start “encodes” the input configuration at time 0.
nochange ensures that no changes are made to the field at the current
position. change represents the transition function.

It is straightforward to see that the map w 7→ ψw is computable in
polynomial time.

(1) Let w ∈ L(M). Every computation of M induces an interpretation
of the propositional variables Xq,t, Ya,i,t, Zi,t. An accepting com-
putation of M on w induces an interpretation that satisfies ψw.
Therefore, ψw ∈ sat.

(2) Let C = (q, y, p) be some configuration of M, t ≤ p(n). Set

conf[C, t] := Xq,t ∧
p(n)∧
i=0

Yyi ,i,t ∧ Zp,t.

Please note that start = conf[C0(w), 0]. Thus,

ψw |= conf[C0(w), 0]

holds. For every non-final configuration C of M and all t < p(n),
we obtain (because of the subformula compute of ψw) :

ψw ∧ conf[C, t] |= ∨
C′∈Next(C)

conf[C′, t + 1].

(3) Let I(ψw) = 1. From (1) and (2) it follows that there is at least
one computation C0(w) = C0, C1, . . . , Cr = Cend of M on w with

32

3 Completeness

r ≤ p(n) such that I(conf[Ct, t]) = 1 for each t = 0, . . . , v. Further-
more, ψw |= ¬conf[C, t] holds for all rejecting final configurations
C of M and all t because of the subformula END of ψw. Therefore,
Cend is accepting, and M accepts the input w.

We have thus shown that ψw ∈ sat if, and only if, w ∈ A. q.e.d.

Remark. The reduction w 7→ ψw is particularly easy; it is computable
with logarithmic space.

A consequence from Theorem 3.7 is that sat is NP-complete via
Logspace-reductions.

Even though sat is NP-complete, the satisfiability problem may
still be polynomially solvable for some interesting formulae classes
S ⊆ PL. We show that for certain classes S ⊆ PL, S ∩ sat ∈ P while in
other cases S ∩ sat is NP-complete.

Reminder. A literal is a propositional variable or its negation. A
formula ψ ∈ PL is in disjunctive normal form (DNF) if it is of the form
ψ =

∨n
i=1

∧mi
j=1 Yij, where Yij are literals. A formula ψ is in conjunctive

normal form (CNF) if it has the form ψ =
∧n

i=1
∨mi

j=1 Yij. A disjunction∨
j Yij is also called clause. Every formula ψ ∈ PL is equivalent to a

formula ψD in DNF and to a formula ψC in CNF.

ψ ≡ ψD :=
∨

I:τ(ψ)→{0,1}
I(ψ)=1

∧
X∈τ(ψ)

XI

with

XI =

X if I(X) = 1

¬X if I(X) = 0 ,

and analogously for CNF.
The translations ψ 7→ ψD, ψ 7→ ψC are computable but generally

not in polynomial time. The formulae ψD and ψC can be exponentially
longer than ψ as there are 2|τ(ψ)| possible maps I : τ(ψ) → {0, 1}.

sat-dnf := {ψ in DNF : ψ satisfiable} and

33

3.3 P-complete problems

sat-cnf := {ψ in CNF : ψ satisfiable}

denote the set of all satisfiable formulae in DNF and CNF, respectively.

Theorem 3.8. sat-dnf ∈ Logspace ⊆ P.

Proof. ψ =
∨

i
∧mi

j=1 Yij is satisfiable iff there is an i such that no variable
in {Yij : j = 1, . . . , mi} occurs both positively and negatively. q.e.d.

Theorem 3.9. sat-cnf is NP-complete via Logspace-reduction.

Proof. The proof follows from the one of Theorem 3.7. Consider the
formula

ψw = start∧ compute∧ end .

From the proof, we see that start and end are already in CNF. The
same is true for the subformula nochange of compute, only change
is left. change is a conjunction of formulae that have the form

α : X ∧Y ∧ Z →
r∨

j=1
Xj ∧Yj ∧ Zj.

Here, r ≤ max(q,a) |δ(q, a)| is fixed, i.e., independent of n and w. But
we have

α ≡ (X∧Y∧Z →
r∨

j=1
Uj)∧

r∧
j=1

(Uj → Xj)∧ (Uj → Yj)∧ (Uj → Zj)).

Therefore, A ≤log sat-cnf for each A ∈ NP. q.e.d.

3.3 P-complete problems

A (propositional) Horn formula is a formula ψ =
∧

i
∨

j Yij in CNF where
every disjunction

∨
j Yj contains at most one positive literal. Horn for-

mulae can also be written as implications by the following equivalences:

¬X1 ∨ · · · ∨ ¬Xk ∨ X ≡ (X1 ∧ · · · ∧ Xk) → X,

¬X1 ∨ · · · ∨ ¬Xk ≡ (X1 ∧ · · · ∧ Xk) → 0.

34

3 Completeness

Let horn-sat = {ψ ∈ PL : ψ a satisfiable Horn formula}. We know
from mathematical logic:

Theorem 3.10. horn-sat ∈ P.

This follows, e.g., by unit resolution or the marking algorithm.

Theorem 3.11. horn-sat is P-complete via logspace reduction.

Proof. Let A ∈ P and M a deterministic 1-tape Turing machine, that
decides A in time p(n). Looking at the reduction w 7→ ψw from the
proof of Theorem 3.7, we see that the formulae start, nochange and
end are already Horn formulae. Since M was chosen to be deterministic,
i.e., |δ(q, a)| = 1, change takes the form (X ∧Y ∧ Z) → (X′ ∧Y′ ∧ Z′).
This is equivalent to the Horn formula (X ∧ Y ∧ Z) → X′ ∧ (X ∧ Y ∧
Z) → Y′ ∧ (X ∧ Y ∧ Z) → Z′. We thus have a logspace computable
function w 7→ ψ̂w such that

• ψ̂w is a Horn formula,
• M accepts w iff ψ̂w is satisfiable.

Therefore, A ≤log horn-sat. q.e.d.

Another fundamental P-complete problem is the computation of
winning regions in finite (reachability) games.

Such a game is given by a game graph G = (V, V0, V1, E) with a
finite set V of positions, partitioned into V0 and V1, such that Player 0
moves from positions v ∈ V0, moves from positions v ∈ V1. All moves
are along edges, and we use the term play to describe a (finite or
infinite) sequence v0v1v2 . . . with (vi, vi+1) ∈ E for all i. We use a
simple positional winning condition: Move or lose! Player σ wins at
position v if v ∈ V1−σ and vE = ∅, i.e., if the position belongs to the
opponent and there are no possible moves possible from that position.
Note that this winning condition only applies to finite plays, infinite
plays are considered to be a draw.

A strategy for Player σ is a mapping

f : {v ∈ Vσ : vE ̸= ∅} → V

with (v, f (v)) ∈ E for all v ∈ V. We call f winning from position v if
all plays that start at v and are consistent with f are won by Player σ.

35

3.3 P-complete problems

We now can define winning regions W0 and W1:

Wσ = {v ∈ V : Player σ has a winning strategy from position v}.

This leads to several algorithmic problems for a given game G:
The computation of winning regions W0 and W1, the computation of
winning strategies, and the associated decision problem

game := {(G, v) : Player 0 has a winning strategy for G from v}.

Theorem 3.12. game is P-complete and decidable in time O(|V|+ |E|).

A simple polynomial-time approach to solve game is to compute
the winning regions inductively: Wσ =

⋃
n∈N Wn

σ , where

W0
σ = {v ∈ V1−σ : vE = ∅}

is the set of terminal positions which are winning for Player σ, and

Wn+1
σ = {v ∈ Vσ : vE ∩Wn

σ ̸= ∅} ∪ {v ∈ V1−σ : vE ⊆ Wn
σ }

is the set of positions from which Player σ can win in at most n + 1
moves.

After n ≤ |V| steps, we have that Wn+1
σ = Wn

σ , and we can stop
the computation here.

To solve game in linear time, use the slightly more involved Algo-
rithm 3.1. Procedure Propagate will be called once for every edge in the
game graph, so the running time of this algorithm is linear with respect
to the number of edges in G.

The problem game is equivalent to the satisfiability problem for
propositional Horn formulae. We recall that propositional Horn formu-
lae are finite conjunctions

∧
i∈I Ci of clauses Ci of the form

X1 ∧ . . . ∧ Xn → X or

X1 ∧ . . . ∧ Xn︸ ︷︷ ︸
body(Ci)

→ 0︸︷︷︸
head(Ci)

.

A clause of the form X or 1 → X has an empty body.

36

3 Completeness

Algorithm 3.1. A linear time algorithm for game

Input: A game G = (V, V0, V1, E)
Output: Winning regions W0 and W1
foreach v ∈ V do /* 1: Initialisation */

win[v] := ⊥
P[v] := ∅
n[v] := 0

endfor
foreach (u, v) ∈ E do /* 2: Calculate P and n */

P[v] := P[v] ∪ {u}
n[u] := n[u] + 1

endfor
foreach v ∈ V0 do /* 3: Calculate win */

if n[v] = 0 then Propagate(v, 1)
endfor
foreach v ∈ V \V0 do

if n[v] = 0 then Propagate(v, 0)
endfor
returnwin
procedure Propagate(v, σ)
if win[v] ̸= ⊥ then return
win[v] := σ /* 4: Mark v as winning for player σ */
foreach u ∈ P[v] do /* 5: Propagate change to predecessors */

n[u] := n[u]− 1 if u ∈ Vσ or n[u] = 0 then Propagate(u, σ)
endfor

We will show that sat-horn and game are mutually reducible via
logspace and linear-time reductions.

(1) game ≤log-lin sat-horn
For a game G = (V, V0, V1, E), we construct a Horn formula ψG
with clauses

v → u for all u ∈ V0 and (u, v) ∈ E, and

v1 ∧ . . . ∧ vm → u for all u ∈ V1 and uE = {v1, . . . , vm}.

The minimal model of ψG is precisely the winning region of
Player 0, so

(G, v) ∈ game ⇐⇒ ψG ∧ (v → 0) is unsatisfiable.

37

3.4 NLogspace-complete problems

(2) sat-horn ≤log-lin game
For a Horn formula ψ(X1, . . . , Xn) =

∧
i∈I Ci, we define a game

Gψ = (V, V0, V1, E) as follows:

V = {0} ∪ {X1, . . . , Xn}︸ ︷︷ ︸
V0

∪ {Ci : i ∈ I}︸ ︷︷ ︸
V1

and

E = {Xj → Ci : Xj = head(Ci)} ∪ {Ci → Xj : Xj ∈ body(Ci)},

i.e., , Player 0 moves from a variable to some clause containing
the variable as its head, and Player 1 moves from a clause to some
variable in its body. Player 0 wins a play if, and only if, the play
reaches a clause C with body(C) = ∅. Furthermore, Player 0 has
a winning strategy from position X if, and only if, ψ |= X, so we
have

Player 0 wins from position 0 ⇐⇒ ψ is unsatisfiable.

In particular, game is P-complete, and sat-horn is solvable in
linear time.

3.4 NLogspace-complete problems

We already know that the reachability problem, i.e. to decide, given a
directed graph G and two nodes a and b, whether there is a path from
a to b in G, is in NLogspace.

Theorem 3.13. reachability is NLogspace-complete.

Proof. Let A be an arbitrary problem in NLogspace. There is a nonde-
terministic Turing machine M that decides A with workspace c log n.
We prove that A ≤log reachability by associating, with every input
x for M, a graph Gx = (Xx, Ex) and two nodes a and b, such that M
accepts x if, and only if, there is a path from a to b in Gx. The set of
nodes of Gx is

Vx := {C : C is a partial configuration of M with

workspace c log |x|} ∪ {b} ,

38

3 Completeness

and the set of edges is

Ex := {(C, C′) : (C, x) ⊢M (C′x)} ∪ {(Ca, b) : Ca is accepting} .

Recall that a partial configuration is a configuration without the descrip-
tion of the input. Each partial configuration in Vx can be described by a
word of length O(log |x|). Further we define a to be the initial partial
configuration of M. Clearly (Gx, a, b) is constructible with logarithmic
space from x and there is a path from a to b in Gx if, and only if, there
is an accepting computation of M on x. q.e.d.

We next discuss a variant of sat that is NLogspace-complete.

Definition 3.14. A formula is in r-CNF if it is in CNF and every clause
contains at most r literals: ψ =

∧n
i=1

∨mi
j=1 Yij with mi ≤ r for all i.

Furthermore, r-sat := {ψ in r-CNF : ψ is satisfiable}.

It is known that r-sat is NP-complete for all r ≥ 3.
To the contrary, 2-sat can be solved in polynomial time, e.g., by

resolution:

• The resolvent of two clauses with ≤ 2 literals contains at most 2
literals.

• At most O(n2) clauses with ≤ 2 literals can be formed with n
variables.

Hence, we obtain that Res∗(ψ) for a formula ψ in 2-CNF can be
computed in polynomial time. One can show an even stronger result.

Theorem 3.15. 2-sat is in NLogspace.

Proof. We show that {ψ : ψ in 2-CNF, ψ unsatisfiable} ∈ NLogspace.
Then, by the Theorem of Immerman and Szelepcsényi, also 2-sat ∈
NLogspace. The reduction maps a formula ψ ∈ 2-CNF to the following
directed graph Gψ = (V, E):

• V = {X,¬X : X ∈ τ(ψ)} represents the literals of ψ.

• E = {(Y, Z) : ψ contains a clause equivalent to (Y → Z)}.

39

3.4 NLogspace-complete problems

X1 X2 X3

¬X1 ¬X2 ¬X3

(a) Gψa

X1 X2

¬X1 ¬X2

(b) Gψb

Figure 3.1. Graphs for ψa = X1 ∧ (¬X1 ∨ X2) ∧ (X3 ∨ ¬X2) ∧ (¬X3 ∨ ¬X1) and
ψb = (X1 ∨ X2)

Example 3.16. Figures 3.1(a) and 3.1(b) show the graphs constructed for
an unsatisfiable and a satisfiable 2-CNF formula, respectively.

Lemma 3.17 (Krom-Criterion). Let ψ be in 2-CNF. ψ is unsatisfiable if,
and only if, there exists a variable X ∈ τ(ψ) such that Gψ contains a
path from X to ¬X and one from ¬X to X.

The problem

L = {(G, a, b) : G directed graph, there is a path from a to b}

is also called the labyrinth problem. A formula ψ is unsatisfiable if, and
only if, there exists a variable X ∈ τ(ψ) such that (Gψ, X,¬X) ∈ L and
(Gψ,¬X, X) ∈ L. Since L ∈ NLogspace, the claim follows. q.e.d.

Proof (of Lemma 3.17). We use the notation Y →∗
ψ Z to denote that there

exists a path from Y to Z in Gψ.
Let I be an interpretation such that I(ψ) = 1. Then, I(Y) =

1, Y →∗
ψ Z =⇒ I(Z) = 1. Hence, if X →∗

ψ ¬X →∗
ψ X, then ψ is

unsatisfiable.
Conversely, for all X ∈ τ(ψ), either not X →∗

ψ ¬X or not ¬X →∗
ψ X.

In this case, Algorithm 3.2 constructs an interpretation I such that
I(ψ) = 1.

It is not possible to produce conflicting assignments resulting from
Y →∗

ψ Z as well as Y →∗
ψ ¬Z since this would imply ¬Z →∗

ψ ¬Y and
Z →∗

ψ ¬Y, and hence Y →∗
ψ Z →∗

ψ ¬Y. But Y was chosen as to not have
this property.

40

3 Completeness

Algorithm 3.2

U := τ(ψ) ∪ ¬τ(ψ)
while U ̸= ∅ do

choose Y ∈ U such that Y →∗
ψ ¬Y does not hold

I(Y) := 1
U := U − {Y,¬Y}
foreach Z such that Y →∗

ψ Z do
I(Z) := 1
U := U − {Z,¬Z}

endfor
endwhile

Thus, Algorithm 3.2 constructs an interpretation I since, for every
variable X ∈ τ(ψ), either I(X) = 1 or I(¬X) = 1. However, due to the
nondeterministic choice of Y in each loop, the resulting interpretation
is not uniquely determined.

Let I be an interpretation constructed by Algorithm 3.2. It remains
to prove that I satisfies each clause (Z ∨ Z′), and thus ψ.

Otherwise, there is a clause (Z ∨ Z′) such that I(Z) = I(Z′) = 0,
i.e., I(¬Z) = 1. This implies, that the algorithm has chosen a literal Y
such that Y →∗

ψ ¬Z but Y →∗
ψ ¬Y does not hold. Since ¬Z →∗

ψ Z′, we
obtain Y →∗

ψ Z′ and hence I(Z′) = 1, which is a contradiction. q.e.d.

Remark 3.18. Formulae in 2-CNF are sometimes called Krom-formulae.

Theorem 3.19. 2-sat is NLogspace-complete.

Proof. We prove that reachability ≤log 2-sat.

Given a directed graph G = (V, E) with nodes a and b, we construct
the 2-CNF formula

ψG,a,b := a ∧ ∧
(u,v)∈E

(u → v) ∧ ¬b.

Clearly this defines a logspace-reduction from the reachability
problem to 2-sat. q.e.d.

41

3.5 A Pspace-complete problem

3.5 A Pspace-complete problem

Let us first recall two important properties of the complexity class
Pspace :=

⋃
k Dspace(nk).

• Pspace =
⋃

k∈N Nspace(nk) = NPspace because, by the Theorem
of Savitch, Nspace(S) ⊆ Dspace(S2).

• NP ⊆ Pspace since Ntime(nk) ⊆ Nspace(nk) ⊆ Dspace(n2k) ⊆
Pspace.

A problem A is Pspace-hard if B ≤p A for all B ∈ Pspace. A is
Pspace-complete if A ∈ Pspace and A is Pspace-hard.

As an example of Pspace-complete problems, we consider the
evaluation problem for quantified propositional formulae (also called
QBF for “quantified Boolean formulae”).

Definition 3.20. Quantified propositional logic is an extension of (plain)
propositional logic. It is the smallest set closed under disjunction, con-
junction and complement that allows quantification over propositional
variables in the following sense: If ψ is a formula from quantified propo-
sitional logic and X a propositional variable, then ∃Xψ, ∀Xψ are also
quantified propositional formulae.

Example 3.21. ∃X(∀Y(X ∨Y) ∧ ∃Z(X ∨ Z)).

By free(ψ) we denote the set of free propositional variables in ψ.
Every propositional interpretation I : σ → {0, 1} with σ ⊆ τ defines
logical values I(ψ) for all quantified propositional formulae ψ with
free(ψ) ⊆ σ. Let I be an interpretation and X ∈ τ a propositional
variable. Further, we write I[X = 1] for the interpretation that agrees
with I on all Y ∈ τ, Y ̸= X and interprets X with 1. Analogously, let
I[X = 0] be the interpretation with I[X/0](Y) = I(Y) for Y ̸= X and
I[X/0](X) = 0. Then, I(∃Xψ) = 1 if, and only if, I[X/0](ψ) = 1 or
I[X/1](ψ) = 1. Similarly, I(∀Xψ) = 1 if, and only if, I[X/0](ψ) = 1
and I[X/1](ψ) = 1.

Observe that if free(ψ) = ∅ the value I(ψ) ∈ {0, 1} does not
depend on a concrete interpretation I; we have either I(X) = 1 (ψ is
satisfied) or I(X) = 0 (ψ is unsatisfied). The formula ∃X(∀Y(X ∨ Y) ∧
∃Z(X ∨ Z)) is satisfied, for example.

42

3 Completeness

Algorithm 3.3. Eval(ψ, I)

Input: ψ, I
if ψ = X ∈ V then return I(X)
if ψ = (ϕ1 ∨ ϕ2) then

if Eval(ϕ1, I) = 1 then return 1 else return Eval(ϕ2, I)
endif
if ψ = (ϕ1 ∧ ϕ2) then

if Eval(ϕ1, I) = 0 then return 0 else return Eval(ϕ2, I)
endif
if ψ = ¬ϕ then return 1− Eval(ϕ, I)
if ψ = ∃Xϕ then

if Eval(ϕ, I[X = 0]) = 1 then return 1 else
return Eval(ϕ, I[X = 1])

endif
endif
if ψ = ∀Xϕ then

if Eval(ϕ, I[X = 0]) = 0 then return 0 else
return Eval(ϕ, I[X = 1])

endif
endif

Definition 3.22.

qbf := {ψ a quantified PL formula : free(ψ) = ∅ , ψ true}.

Remark 3.23. Let ψ = ψ(X1, . . . , Xn) be a propositional formula (i.e., one
that does not contain quantifiers). Then,

ψ ∈ sat ⇐⇒ ∃X1 . . . ∃Xnψ ∈ qbf.

qbf is therefore at least as hard as sat. Actually, we will show that qbf
is Pspace-complete.

Theorem 3.24. qbf ∈ Pspace.

Proof. The recursive procedure Eval(ψ, I) presented in Algorithm 3.3
computes the value I(ψ) for a quantified propositional formula ψ and
I : free(ψ) → {0, 1}.

This procedure uses O(n2) space. It is easy to see that I(ψ) is
computed correctly. q.e.d.

43

3.5 A Pspace-complete problem

Theorem 3.25. qbf is Pspace-hard.

Proof. Consider a problem A in Pspace and let M be some nk-space
bounded 1-tape TM with L(M) = A. Every configuration of M on
some input w of length n can be described by a tuple X̄ of propositional
variables consisting of:

Xq (q is state of M) : “M is in state q”,
X′a,i (a tape symbol, i ≤ nk) : “symbol a is on field i”,
X′′j (j ≤ nk) : “M is on position j”.

As in the NP-completeness proof for sat, we construct formu-
lae conf(X̄), next(X̄, Ȳ), inputw(X̄) and acc(X̄) with the following
intended meanings:

• conf(X̄) : X̄ encodes some configuration, i.e., exactly one Xq is
true, exactly one X′a,i is true for every i, and exactly one X′′j is true.

• inputw(X̄) : X̄ encodes the initial configuration of M on w =
w0 . . . wn−1:

inputw(X̄) := conf(X̄) ∧ Xq0 ∧
n−1∧
i=0

X′wi ,i ∧
nk∧

i=n
X′�,i ∧ X′′0 .

• acc(X̄) : X̄ is an accepting configuration:

acc(x̄) := conf(X̄) ∧ ∨
q∈E+

Xq.

• next(X̄, Ȳ) : Ȳ is a successor configuration of X̄:

next(X̄, Ȳ) :=
∧
i

(
X′′i →

(∧
a,j ̸=i

(Y′a,j ↔ Xa,j) ∧

∧
δ(q,a)=(q′ ,b,m)

0≤m+i≤nk

(Xq ∧ X′a,i → Yq′ ∧Y′b,i ∧Y′′i+m)
))

.

Given w, these formulae can be constructed in polynomial time.

44

3 Completeness

Furthermore, we define the predicate

eq(X̄, Ȳ) :=
∧
q

(Xq ↔ Yq) ∧
∧
a,i

(X′a,i ↔ Y′a,i) ∧
∧

j
(X′′j ↔ Y′′j).

We inductively construct formulae reachm(X̄, Ȳ) expressing that X̄ and
Ȳ encode configurations and Ȳ is accessible from X̄ in at most 2m steps.
For m = 0, let

reach0(X̄, Ȳ) := conf(X̄) ∧ conf(Ȳ) ∧ (eq(X̄, Ȳ) ∨ next(X̄, Ȳ)).

A naïve way to define reachm+1 would be

reachm+1(X̄, Ȳ) := ∃Z̄(reachm(X̄, Z̄) ∧ reachm(Z̄, Ȳ)).

But then |reachm+1| ≥ 2 · |reachm| so that |reachm| ≥ 2m and hence
grows exponentially. We can, however, construct reachm+1 differently
so that the exponential growth of the formula length is avoided by using
universal quantifiers:

reachm+1(X̄, Ȳ) :=

∃Z̄∀Ū∀V̄

(
(eq(X̄, Ū) ∧ eq(Z̄, V̄))

∨ (eq(Z̄, Ū) ∧ eq(Ȳ, V̄))

)
→ reachm(Ū, V̄) .

We now obtain:

|reach0| = O(nk) for some appropriate k, and

|reachm+1| = |reachm|+ O(nk).

Hence, |Reachm| = O(m · nk).

If M accepts the input w using space nk it performs at most ≤ 2c·nk

steps for some constant c. Set m := c · nk and

ψw := ∃X̄ ∃Ȳ(input(X̄) ∧ acc(Ȳ) ∧ reachm(X̄, Ȳ)).

Obviously, ψw is constructable from w in polynomial time and ψw ∈ qbf
if and only if w ∈ L(M). Therefore, qbf is Pspace-complete. q.e.d.

45

