
Complexity Theory
WS 2009/10

Prof. Dr. Erich Grädel

Mathematische Grundlagen der Informatik
RWTH Aachen

cbnd
This work is licensed under:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/
Dieses Werk ist lizensiert uter:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

© 2009 Mathematische Grundlagen der Informatik, RWTH Aachen.
http://www.logic.rwth-aachen.de

Contents

1 Deterministic Turing Machines and Complexity Classes 1
1.1 Turing machines . 1
1.2 Time and space complexity classes 4
1.3 Speed-up and space compression 7
1.4 The Gap Theorem . 9
1.5 The Hierarchy Theorems . 11

2 Nondeterministic complexity classes 17
2.1 Nondeterministic Turing machines 17
2.2 Elementary properties of nondeterministic classes 19
2.3 The Theorem of Immerman and Szelepcsényi 21

3 Completeness 27
3.1 Reductions . 27
3.2 NP-complete problems: Sat and variants 28
3.3 P-complete problems . 34
3.4 NLogspace-complete problems 38
3.5 A Pspace-complete problem 42

4 Oracles and the polynomial hierarchy 47
4.1 Oracle Turing machines . 47
4.2 The polynomial hierarchy . 49
4.3 Relativisations . 52

5 Alternating Complexity Classes 55
5.1 Complexity Classes . 56
5.2 Alternating Versus Deterministic Complexity 57
5.3 Alternating Logarithmic Time 61

6 Complexity Theory for Probabilistic Algorithms 63
6.1 Examples of probabilistic algorithms 63
6.2 Probabilistic complexity classes and Turing machines 72
6.3 Probabilistic proof systems and Arthur-Merlin games 81

2 Nondeterministic complexity classes

2.1 Nondeterministic Turing machines

Nondeterministic Turing machines (NTM) are defined just as their de-
terministic counterparts except that the transition function generally
allows several possible transitions.

Again, the most important model is the k-tape TM. The possible
transitions are given by a function δ : Q×Σk → P(Q×Σk×{−1, 0, 1}k)
(modified accordingly if the first tape is a read-only input tape). Again,
we will mainly deal with acceptors, so that the set of final states is
partitioned F = F+ ∪ F−.

A configuration of a nondeterministic Turing machine M usually
has several successor configurations. Let Next(C) = {C′ : C ⊢M C′}
be the set of successor configurations of C. For each NTM M there is
an integer r ∈ N such that |Next(C)| ≤ r for all configurations C of M.
Given an input x for a nondeterministic Turing machine M, instead of a
(complete) sequential computation, we consider a computation tree TM,x

defined as follows:

• the root of TM,x is the initial configuration C0(x);
• the children of each node C are the elements of Next(C).

A computation path of M on x or, simply, a computation is a sequence
C0, . . . , Ct of configurations with C0 = C0(x) and Ci+1 ∈ Next(Ci), that
is, a path through TM,x starting at the root.

Definition 2.1. A nondeterministic Turing machine is T-time bounded
(respectively S-space bounded) if no computation M on inputs of length
n takes more than T(n) steps (uses more than S(n) fields).

Definition 2.2. Let M be a NTM and x its input. M accepts x, if there is
at least one computation of M on x that stops in an accepting configu-
ration. L(M) = {x : M accepts x} is the language accepted by M.

17

2.1 Nondeterministic Turing machines

Definition 2.3.
Ntime(T) := {L : there is a T-time bounded NTM with L(M) = L}.
Nspace(S) := {L : there is an S-space bounded NTM with L(M) = L}.
Other classes such as Ntimek(T) can be defined analogously.

Remark 2.4. In informal descriptions of nondeterministic Turing ma-
chines, nondeterministic steps are often called “guesses”. Thus, “Guess
a y ∈ Σm ” means: Perform a sequence of m nondeterministic steps so
that in the ith step, the ith symbol of y is nondeterministically chosen
from |Σ|. The (pseudo-)instruction is equivalent to a computation tree
of depth m with |Σ| many successors at all inner nodes and with |Σ|m
leaves labelled with y ∈ Σm.

Example 2.5 (A nondeterministic algorithm for the Reachability problem).
The following algorithm solves Reachability nondeterministically:

Algorithm 2.1 Nondeterministic Reachability

Input: G = (V, E), a directed graph, a, b ∈ V (|V| = n)
x := a
for n steps do

if x = b then accept else
guess y ∈ V with (x, y) ∈ E
x := y

endif

endfor
reject

If there is a path in G from a to b, then there is also one of length≤ n
(longer paths would include cycles). Therefore, the algorithm has an ac-
cepting computation iff there is a path from a to b. The required space is
≤ 3 · log n (log n for x, y and the counter). Hence, Reachability belongs
to the complexity class NLogspace = Nspace(O(log n)). As we have
seen in the exercises, Reachability also belongs to Dspace(O(log2 n)).

18

2 Nondeterministic complexity classes

2.2 Elementary properties of nondeterministic classes

In order to compare deterministic and nondeterministic complexity
classes, we often look at the configuration graphs of nondeterministic
Turing machines.

Definition 2.6. Let M be a nondeterministic Turing machine and s ∈
N∪ {∞}. Then

Conf[s] := {C : C is a configuration of M using space at most s},

and the successor relation on configuration defines the (directed) config-
uration graph G[M, s] = (Conf[s],⊢M).

For any S space bounded nondeterministic TM M and any input x
(with |x| = n), we have:

• The computation tree TM,x corresponds to the unravelling of
G[M, S(n)] from the input configuration C0(x).

• M accepts x if there is a path from C0(x) to some accepting config-
uration Ca in G[M, S(n)].

Theorem 2.7. Dtime(T) ⊆ Ntime(T) ⊆ Nspace(T) ⊆ Dtime(2O(T))
for all space-constructible T : N → R+ with T(n) ≥ log n.

Proof. The first inclusions Dtime(T) ⊆ Ntime(T) ⊆ Nspace(T) are
trivial. To prove the remaining inclusion, let M be a nondeterministic,
T-space bounded TM. Since every configuration uses at most T(n) fields,
G[M, T(n)] consists of at most 2T(n) different configurations. M accepts
x iff there is a path in G from C0(x) to an accepting configuration. In
time 2O(T(n)), a deterministic algorithm can

(a) construct G and
(b) decide for all accepting configurations Ca whether G contains a

path from C0(x) to Ca.

This follows from the fact that Reachability can be solved by a deter-
ministic algorithm in polynomial time. q.e.d.

Theorem 2.8 (Savitch’s Theorem). Nspace(S) ⊆ Dspace(S2) for any
space constructible function S(n) ≥ log n.

19

2.2 Elementary properties of nondeterministic classes

Algorithm 2.2. Reach(C1, C2, k)

if k = 0 then
if C1 = C2 ∨ C2 ∈ Next(C1) then return 1 else return 0

else // k > 0
foreach C ∈ Conf[S(n)] do

if Reach(C1, C, k− 1) = 1∧ Reach(C, C2, k− 1) = 1 then
return 1

endif
endfor
return 0

endif

Proof. Let M be a S-space bounded NTM. Then there exists a constant d
such that M reaches at most 2dS(n) different configurations on inputs of
length n. If M has an accepting computation on x, then there is one that
is reachable in at most 2d·S(n) steps. Furthermore, every configuration
of M on x can be expressed by a word of length c · S(n), where c is a
constant. Here, we use that S(n) ≥ log n.

Again, the idea is to search the configuration graph for reachable
accepting configurations. Unlike in the previous argument, we cannot
explicitly construct the whole configuration graph or maintain a com-
plete list of reachable positions. However, we can solve the problem by
an on-the-fly construction of G[M, T(n)]. We define a recursive, deter-
ministic procedure Reach(C1, C2, k), see Algorithm 2.2, that, given two
configurations C1, C2 ∈ Conf[S(n)] and an integer k ∈ N, computes the
following output:

Reach(C1, C2, k) =

1 if M can reach configuration C2 from C1

in less than 2k steps;

0 otherwise.

Let f (n, k) = max{spaceReach(C1,C2,k) : C1, C2 ∈ Conf[S(n)]}. We have

• f (n, 0) = 0

• f (n, k + 1) ≤ c · S(n) + f (n, k), where c · S(n) is the space used to
write C (space constructibility of S)

20

2 Nondeterministic complexity classes

Algorithm 2.3. Mdet

Input: x
foreach accepting configuration Ca ∈ Conf[S(n)] do

if Reach(C0(x), Ca, d · S(n)) = 1 then accept
endfor
reject

Therefore, f (n, k) ≤ k · c · S(n). L(M) can be decided by Algorithm 2.3.
Since spaceMdet

(x) = O(S(n)) + f (n, d · S(n)) = O(S2(n)), we conclude
that L(M) ∈ Dspace(O(S2)) = Dspace(S2). q.e.d.

Corollary 2.9.

(i) NLogspace ⊆ P.

(ii) NPspace = Pspace.

(iii) NP ⊆ Pspace.

Proof.

(i) NLogspace := Nspace(O(log n)) ⊆ Dtime(2O(log n))
= Dtime(nO(1)) = P.

(ii) NPspace :=
⋃

d∈N Nspace(nd) ⊆ ⋃
d∈N Dspace(n2d) = Pspace.

(iii) NP :=
⋃

d∈N Ntime(nd) ⊆ NPspace = Pspace. q.e.d.

2.3 The Theorem of Immerman and Szelepcsényi

Definition 2.10. Let C be a class of languages (e.g., a complexity class).
Then, we define the class coC := {L : L ∈ C}, where L is denotes the
complement of L.

The deterministic complexity classes Dtime(T) and Dspace(T) are
obviously closed under the following operations:

• Union: L, L′ ∈ C =⇒ L ∪ L′ ∈ C;

• Intersection: L, L′ ∈ C =⇒ L ∩ L′ ∈ C;

• Complement: L ∈ C =⇒ L ∈ C, i.e., C = coC.

21

2.3 The Theorem of Immerman and Szelepcsényi

The nondeterministic complexity classes Ntime(T) and Nspace(S) are
also closed under union and intersection. However, the closure under
complement is not obvious and possibly incorrect in many instances.
Actually, it is conjectured that the complexity class Ntime(T) is not
closed under complement. For Nspace(S), this conjecture had been
standing for a long time when Immerman and Szelepcsényi presented
the following surprising result in 1988.

Theorem 2.11 (Immerman und Szelepcsényi).

Nspace(S) = coNspace(S)

for any space constructible function S(n) ≥ log n.

The main idea of the proof is to “count inductively” all reachable
configurations. Once the number Rx(t) of configurations that can be
reached in t steps is known, we can decide for every configuration
C whether it is reachable in t + 1 steps. If so, this can be verified by
guessing an appropriate computation for C. Otherwise, we can verify
that C ̸∈ Next(D) for all Rx(t) configurations of D that are reachable in
t steps. More generally, for a nondeterministic decision procedure of L,
we only require that x ∈ L iff there is an accepting computation of M on
x. In particular, there can be rejecting computations on x although x ∈ L.
To sharpen our terminology accordingly, we introducing the notion of
an error-free nondeterministic computation or decision procedure.

Definition 2.12. An error-free nondeterministic computation procedure
for a function f is a nondeterministic Turing machine M with the
following properties:

(i) every computation of M on x stops with output either f (x) or ? (“I
don’t know”);

(ii) at least one computation of M produces the result f (x).

An error-free nondeterministic decision procedure for a language
L is an error-free nondeterministic computation procedure for its char-
acteristic function χL.

We will now prove the following theorem which implies Theo-
rem 2.11.

22

2 Nondeterministic complexity classes

Theorem 2.13. Let S(n) ≥ log n be space constructible. Then, for
every L ∈ Nspace(S) there is an error-free S-space bounded decision
procedure.

In particular, this implies that such a decision procedure also exists
for L and, consequently, L ∈ Nspace(S).

Proof. Let M be a S-space bounded NTM that decides L, C0(x) the
initial configuration of M on x and Conf[S(n)] the set of configurations
of M with space usage ≤ S(n). As S(n) ≥ log n, every configuration
C ∈ Conf[S(n)] can be described by a word of length S(n). Let

Reachx(t) := {C ∈ Conf[S(n)] : C is reachable from C0(x)

in ≤ t steps}

and set Rx(t) := |Reachx(t)|.
(1) There is a nondeterministic procedure M0 with input x, r, t, C, where
x is the input of M, r, t ∈ N and C ∈ Conf[S(n)] (n = |x|), such that
if r = Rx(t), then M0 decides error-free in space O(S(n)) whether C ∈

Algorithm 2.4. M0(x, r, t, C)

m := 0
foreach D ∈ Conf[S(n)] do

/* simulate (nondeterministically) at most t steps of M on x */
C′ = C0(x)
for t times do

if C′ ̸= D then
guess C′′ ∈ Next(C′)
C′ := C′′

endif
endfor
if C′ = D then /* D was reached */

m = m + 1
if C ∈ Next(D) then output 1

endif
endfor
if m = r then output 0 else output ?

23

2.3 The Theorem of Immerman and Szelepcsényi

Algorithm 2.5. M1

Input: x
r := 1
for t = 0 to t(|x|) do

m := 0
foreach C ∈ Conf[S(n)] do

z := M0(x, r, t, C) /* Call of nondet. procedure M0 */
if z = 1 then m := m + 1
if z = ? then output ?

endfor
r := m

endfor
output r

Reachx(t + 1). It does not matter how M0 operates on (x, r, t, C) with
r ̸= Rx(t).
Remark. The nondeterministic simulation of at most t steps, for t =
2O(S(n)), can be done in space O(S(n)), e.g., by guessing a path step by
step.
Let r = Rx(t). We obtain:

• If C ∈ Reachx(t + 1), there is a computation with output 1. Further-
more, there is no computation with output 0 since no computation
passes through all configurations within t + 1 steps without reach-
ing C at least in the (t + 1)st step.

• If C ̸∈ Reachx(t + 1), there is a computation of M0 that outputs 0.
This is the one that follows all computation paths of length at most
t, checking for every configuration D met on such a path whether
D ̸∈ Next(C). Moreover, no computation returns 1.

(2) Clearly, there is a function t(n) = 2O(S(n)) such that M either halts
after t(n) steps or it enters a loop.

Lemma 2.14. There is an error-free nondeterministic O(S(n))-space
bounded computation procedure for the function x 7→ Rx(t(|x|)).

Proof. Algorithm 2.5 describes the procedure M1 which calls the non-
deterministic procedure M0 (usually several times) and is therefore

24

2 Nondeterministic complexity classes

nondeterministic itself. Each time M0(x, r, t, C) is called by M1, we have
r = Rx(t) for the current values of r and t because:

• t = 0 : r = 1 = Rx(0)

• t > 0 : r = |{C : there is a computation of M0 on input
(x, Rx(t− 1), t− 1, C) with output 1}| = Rx(t).

In particular, the value of r at the end of a successful computation of
M1 equals Rx(t(|x|)). Since there is a computation of M0 on (x, r, t, C)
for all r, t with r = Rx(t) that results in ?, there is also a computation
of M1 that computes the number Rx(t(|x|)). This proves the lemma.

q.e.d.

(3) Finally, Algorithm 2.6 specifies an error-free nondeterministic deci-
sion procedure for L = L(M).

• Let x ∈ L. Hence, there is a computation of M1 that results
in r = Rx(t(|x|)). Then there exists an accepting configura-
tion Ca ∈ Reachx(t(|x|)) and therefore a computation of M0 on
(x, r, t(|x|), Ca) with output 1. Therefore, there is a computation
of M̃ with output “x ∈ L”. On the other hand, it is clear that the
answer “x ∈ L” is produced only if there is an accepting configura-
tion Ca with C0(x) ⊢x

M Ca, that is, if indeed x ∈ L. We have thus
shown: x ∈ L iff there is a computation of M̃ with answer “x ∈ L”.

Algorithm 2.6. M̃

Input: x
r := M1(x) /* Call of M1 */
if r = ? then output ? else

foreach accepting Ca ∈ Conf[S(n)] do
z := M0(x, r, t(|x|), Ca)
if z = 1 then output “x ∈ L”
if z = ? then output ?

endfor
endif
output “x ̸∈ L”

25

2.3 The Theorem of Immerman and Szelepcsényi

• Let x ̸∈ L: Again, there is a computation of M1 resulting in r =
Rx(t(|x|)). As no accepting configuration Ca is reachable from
C0(x), for every Ca there is a computation of M0 on (x, r, t(|x|), Ca)
resulting in 0. Therefore, there is a computation of M̃ with answer
“x ̸∈ L”. On the other hand, this answer is given only if M0 has
returned 0 for each Ca, that is, if no Ca is reachable from C0(x) or,
in other words, if x ̸∈ L.

Thus, we have shown that M̃ is an error-free nondeterministic
decision procedure for L = L(M) and therefore also for L. Obviously,
M̃ is O(S(n))-space bounded. By the Space Compression Theorem
(Theorem 1.18), we obtain L ∈ Nspace(S). q.e.d.

In particular, it follows that coNLogspace = NLogspace.

26

