
Complexity Theory
WS 2009/10

Prof. Dr. Erich Grädel

Mathematische Grundlagen der Informatik
RWTH Aachen

cbnd
This work is licensed under:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/
Dieses Werk ist lizensiert uter:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

© 2009 Mathematische Grundlagen der Informatik, RWTH Aachen.
http://www.logic.rwth-aachen.de

Contents

1 Deterministic Turing Machines and Complexity Classes 1
1.1 Turing machines . 1
1.2 Time and space complexity classes 4
1.3 Speed-up and space compression 7
1.4 The Gap Theorem . 9
1.5 The Hierarchy Theorems . 11

2 Nondeterministic complexity classes 17
2.1 Nondeterministic Turing machines 17
2.2 Elementary properties of nondeterministic classes 19
2.3 The Theorem of Immerman and Szelepcsényi 21

3 Completeness 27
3.1 Reductions . 27
3.2 NP-complete problems: Sat and variants 28
3.3 P-complete problems . 34
3.4 NLogspace-complete problems 38
3.5 A Pspace-complete problem 42

4 Oracles and the polynomial hierarchy 47
4.1 Oracle Turing machines . 47
4.2 The polynomial hierarchy . 49
4.3 Relativisations . 52

5 Alternating Complexity Classes 55
5.1 Complexity Classes . 56
5.2 Alternating Versus Deterministic Complexity 57
5.3 Alternating Logarithmic Time 61

6 Complexity Theory for Probabilistic Algorithms 63
6.1 Examples of probabilistic algorithms 63
6.2 Probabilistic complexity classes and Turing machines 72
6.3 Probabilistic proof systems and Arthur-Merlin games 81

1 Deterministic Turing Machines and
Complexity Classes

1.1 Turing machines

The simplest model of a Turing machine (TM) is the deterministic 1-tape
Turing machine. Despite its simplicity, this model is sufficiently general
to capture the notion of computability and allows us to define a very
intuitive concept of computational complexity. During this course we
will also use more general models of computation with the following
facilities:

• a separate read-only input tape;
• a separate write-only output tape;
• more general types of memory, e.g., k linear tapes (for k ≥ 1),

higher-dimensional memory space, etc.

The corresponding definitions of configurations, computations, etc.
need to be adjusted accordingly. We will do this for one specific model.

Definition 1.1. A (deterministic) Turing machine with separate input and
output tapes and k working tapes is given by

M = (Q, Γin, Γout, Σ, q0, F, δ)

where

• Q is a finite set of states,
• Σ is the finite working alphabet, with a distinguished symbol �

(blank),
• Γin, Γout are the input and output alphabets (often Γin, Γout = Σ),
• q0 ⊆ Q is the initial state,
• F ⊆ Q is the set of final states, and

1

1.1 Turing machines

• δ : (Q \ F)× Γin × Σk →
Q× {−1, 0, 1} × Σk × {−1, 0, 1}k × (Γout ∪ {∗})

is the transition function.

A configuration is a complete description of all relevant data at a
certain moment of the computation (state, memory contents, input, etc.).
It is useful to distinguish between partial and total configurations.

Definition 1.2. Let M be a Turing machine. A partial configuration of M
is a tuple C = (q, w1, . . . , wk, p0, p1, . . . , pk) ∈ Q× (Σ∗)k ×Nk+1, where

• q is the current state,
• w1, . . . , wk are the inscriptions on the working tapes,
• p0 is the position on the input tape, and
• p1, . . . , pk are the positions on the working tapes.

The inscription of the ith working tape is given by a finite word
wi = wi0 . . . wim ∈ Σ∗. There are only blanks on the fields j > m of
the infinite tape. When, in addition to a partial configuration, the
inscriptions of the input and output tapes are given, one obtains a total
configuration of M.

The total initial configuration C0(x) of M on x ∈ Γ∗in is given by

C0(x) = (qo, ε, . . . , ε, 0, . . . , 0, x, ε)

with

• the initial state q0,
• empty working tapes, that is, w1 = w2 = · · · = wk = ε, (we denote

the empty word by ε),
• position 0 on all tapes,
• the inscription x on the input tape, and
• the inscription ε on the output tape.

Remark 1.3. A final configuration is a configuration C = (q, w, p, x, y) with
q ∈ F. The word y (the inscription on the output tape) is the output of
the final configuration C.

Successor configuration. Let C = (q, w1, . . . , wk, p0, p1, . . . , pk, x, y)
be a (total) configuration of a Turing machine M. The transition

2

1 Deterministic Turing Machines and Complexity Classes

to the next configuration is determined by the value of the tran-
sition function δ on the current state q, and the values that have
been read while in C, i.e., the symbols xp0 read from the input
tape and the symbols w1 p1

, . . . , wk pk
read from the working tapes.

Let δ(q, xp0 , w1 p1
, . . . , wk pk

) = (q′, m0, a1, . . . , ak, m1, . . . , mk, b). Then
∆(C) := (q′, w′, p′, x, y′) is a successor configuration of C if

• w′i results from wi by replacing the symbol wi pi
with ai,

• p′i = pi + mi (for i = 0, . . . , k) and

• y′ =

y if b = ∗,

yb if b ∈ Γout.

Notation. We write C ⊢M C′, if C′ = ∆(C).

Definition 1.4. A computation of M on x is a sequence C0, C1, . . . of
(total) configurations of M with C0 = C0(x) and Ci ⊢M Ci+1 for all
i ≥ 0. The computation is complete if it is either infinite or it ends in a
final configuration.

The function computed by M is a partial function fM : Γ∗in → Γ∗out.
Thereby fM(x) = y iff the complete computation of M on x is finite and
ends in a final configuration with output y.

Definition 1.5. A k-tape acceptor is a k-tape Turing machine M (k ≥ 1),
whose final states F are partioned into a set F+ of accepting states and
a set F− of rejecting states. M accepts x, iff the computation of M on x
halts in a state q ∈ F+. M rejects x, iff the computation of M on x halts
in a state q ∈ F−.

Definition 1.6. Let L ⊆ Γ∗in be a language. M decides L if M accepts
all x ∈ L and rejects all x ∈ Γ∗in \ L. L is decidable if there exists an
acceptor M that decides L. We will write L(M) to denote the set of
inputs accepted by M.

In the following, we will often also use k-tape Turing machines
without distinguished input and output tapes. In these cases the first
working tape will also be the input tape while some other tape (or tapes)
will overtake the role of the output tape.

3

1.2 Time and space complexity classes

Conventions. As long as not specified in a different way:

• a Turing machine (TM) shall be a k-tape Turing machine (for ev-
ery k ≥ 1), where k denotes the total number of tapes, possibly
including separate input and output tapes;

• Γ shall stand for the input alphabet.

1.2 Time and space complexity classes

Definition 1.7. Let M be a Turing machine and x some input. Then
timeM(x) is the length of the complete computation of M on x and
spaceM(x) is the total number of working tape cells used in the com-
putation of M on x. Let T, S : N → R≥0 be monotonically increasing
functions. A TM M is

• T-time bounded if timeM(x) ≤ T(|x|) for all inputs x ∈ Γ∗, and
• S-space bounded if spaceM(x) < S(|n|) for all inputs x ∈ Γ∗.

Definition 1.8.

(i) Dtimek(T) is the set of all languages L for which there exists a
T-time bounded k-tape TM that decides L.

(ii) Dspacek(S) is the set of all languages L for which there exists a
S-space bounded k-tape TM that decides L.

(iii) Dtime(T) =
⋃

k∈N Dtimek(T).
(iv) Dspace(S) =

⋃
k∈N Dspacek(S).

(v) Dtime-spacek(T, S) is the set of all languages L for which there is
a T-time bounded and S-space bounded k-tape TM that decides L.

(vi) Dtime-space(T, S) =
⋃

k∈N Dtime-spacek(T, S).

Important complexity classes are:

• Logspace :=
⋃

d∈N Dspace(d log n),
• (Ptime =) P :=

⋃
d∈N Dtime(nd),

• Pspace :=
⋃

d∈N Dspace(nd),
• Exptime :=

⋃
d∈N Dtime(2nd

),
• Expspace :=

⋃
d∈N Dspace(2nd

).

Attention: Some authors may also define Exptime as
⋃

d∈N Dtime(2dn).

4

1 Deterministic Turing Machines and Complexity Classes

Elementary observations on the relationship between time and
space complexity lead to the following statements.

Theorem 1.9.

(a) Dtime(T) ⊆ Dspace(O(T)) for all functions T : N → N.

(b) Dspace(S) ⊆ Dtime
(
2O(S)) for all functions S : N → N with

S(n) ≥ log n.

Proof. (a) A k-tape Turing machine can visit at most k fields in one step.

(b) Because L ∈ Dspace(S), we can assume that L is decided by a TM
M with one input tape and k working tapes using space S.

For every input x (and n = |x|), any partial configuration is ob-
tained at most once during the computation of M on x. Otherwise, M
would run in an endless loop and could not decide L. The number of
partial configurations with space S(n) is bounded by

|Q| · (n + 1) · S(n)k · |Σ|S(n) = 2O(S(n)), whenever S(n) ≥ log n.

Here, (n + 1) is the number of possible positions of the input tape, S(n)k

the number of positions of the working tapes and |Σ|k·S(n) the number
of possible memory contents. Thus, timeM(x) ≤ 2O(S(n)). q.e.d.

Corollary 1.10. Logspace ⊆ P ⊆ Pspace ⊆ Exptime.

Theorem 1.11 (Tape reduction). Let S(n) ≥ n. Then

Dtime-space(T, S) ⊆ Dtime-space1(O(T · S), S).

Proof. (Simulation of a k-tape TM using a 1-tape TM.) Let M be a T-time
bounded and S-space bounded k-tape TM that decides L. The idea is to
simulate the k tapes of M using 2k tracks on a single tape of a 1-tape
TM M′. Track 2j− 1 of the tape of M′ will contain the inscription on
tape j of M and track 2j a mark (∗) at the current head position of tape
j of M.

Before simulating a single step of M, the head of M′ is at the first
(leftmost) mark. The simulation is accomplished in three phases.

5

1.2 Time and space complexity classes

(i) M′ moves to the right up to the last mark and saves (in the state set)
the symbols at the current positions of M, that is, the information
needed to determine the transition of M. Time needed: at most
S(n) steps.

(ii) M′ determines the transition taken by M. This takes one step.

(iii) M′ returns to the first mark performing on its way back all neces-
sary changes on the tape. Time needed: at most S(n) steps.

M′ accepts (or rejects) iff M accepts (or rejects). At most S(n) fields
contain information. Therefore, the marks are at most S(n) fields apart.
The simulating 1-tape TM thus needs O(S(n)) steps and no additional
memory to simulate a step of M. The claim follows. q.e.d.

Where did we use that S(n) ≥ n? Consider an S-space bounded
2-tape Turing machine M, where S(n) < n and where the first tape is
a separate input tape. As long as M is reading the whole input, the
simulating 1-tape TM will have to go to the rightmost position on the
first tape to set the marks. This way, the two marks can be more than
S(n) fields away from each other.

Corollary 1.12. Dtime(T) ⊆ Dtime1(O(T2)).

This follows from Theorem 1.11 using the fact that spaceM(x) ≤
O(timeM(x)) for all M and all x. We also obtain:

Corollary 1.13. Dspace(S) ⊆ Dspace1(S) for S(n) ≥ n.

To simulate a k-tape TM using a 2-tape TM, the time complexity
increases by a logarithmic factor only.

Theorem 1.14. Dtime(T) ⊆ Dtime2(O(T · log T)) for T(n) ≥ n.

Proof (Outline). A k-tape TM M is simulated using a 2-tape TM M′:

• 2 tracks on the first tape of M′ are created for every tape of M.

• The second tape of M′ is only used as intermediate memory for
copy operations.

6

1 Deterministic Turing Machines and Complexity Classes

The first tape of M′ is divided into blocks . . . , B−i, B−i+1, . . . , B−1, B0,
B1, . . . , Bi, where |B0| = 1, |Bj| = 2|j|−1 for j ̸= 0. All characters cur-
rently read by M can be found in block B0. If the head on one track of
M moves to the left, M′ moves the entire inscription on the correspond-
ing tapes to the right. This way, the current character will again be at
position B0. A clever implementation of this idea leads to a simulation
with at most logarithmic time loss: if M is T-time bounded, then M′ is
O(T · log T)-time bounded. q.e.d.

The complete proof can be found, e.g., in J. Hopcraft, J. Ullmann:
Introduction to Automata Theory, Languages and Computation, Addison-
Wesley 1979, pp. 292–295.

1.3 Speed-up and space compression

Definition 1.15. For functions f , g : N → R, we write f = o(g) to
denote limn→∞ f (n)/g(n) = 0.

Theorem 1.16 (Speed-up theorem).

Dtimek(T) ⊆ Dtimek(max(n, ε · T(n)))

for all k > 1, ε > 0, and T : N → R≥0 with n = o(T(n)).

Proof. Let M be a k-tape TM that decides L in time T(n). Choose m
in such way that ε ·m ≥ 16. Let Σ be the working alphabet of M. We
will construct a k-tape TM M′ that uses the working alphabet Σ ∪ Σm

so that it can encode m symbols of M by a single symbol. This way the
computation can be speeded up.

(1) M′ copies the input to a different tape compressing m symbols into
one. Then, M′ treats this working tape as the input tape. Time
needed: n steps for copying and ⌈ n

m ⌉ steps to return the head to
the first symbol of the compressed input.

(2) M′ simulates m steps of M taking 8 steps at a time. The following
operations are executed on the working tapes:

7

1.3 Speed-up and space compression

(a) M′ saves the contents of both neighboring fields of the current
field “in the state set”. This needs 4 steps: one to the left, two
to the right, and one to the left again.

(b) M′ determines the result of the next m steps of M. This is
hard-coded in the transition function of M′. In m steps, M can
only use or change fields that are at most m steps away from
each other. In other words, it can only visit the current field of
M′ and both neighboring fields. Hence, M′ needs 4 steps to
implement this change.

(c) M′ accepts or rejects iff M accepts or rejects, respectively.

Let x be an input of length n. Then

timeM′ (x) ≤ n + ⌈n/m⌉+ 8⌈T(n)/m⌉ ≤ n + n/m + 8T(n)/m + 2.

Since n = o(T(n)), for every d > 0, there is an nd so that T(n)/n ≥ d
for all n ≥ nd. Therefore, n ≤ T(n)/d for n ≥ nd. For n ≥ max(2, nd),
we obtain 2n ≥ n + 2. Thus, M′ needs at most

2n +
n
m

+ 8
T(n)

m
≤ T(n)

(
2
d

+
1

md
+

8
m

)
= T(n)

(
2m + 8d + 1

md

)
steps. Set d = 2m+1

8 . Then the number of steps of M′ is bounded by

T(n)
(

8(2m + 1 + 2m + 1)
m(2m + 1)

)
=

16
m

T(n) ≤ εT(n)

for all n ≥ max(2, nd). The finite number of inputs of length < nd can
be accepted in nd time. q.e.d.

Corollary 1.17.

Dtime(T(n)) = Dtime(max(n, ε · T(n))

for all T : N → R with n = o(T(n)) and all ε > 0.

A similar but easier proof shows the following.

8

1 Deterministic Turing Machines and Complexity Classes

Theorem 1.18 (Space compression).

Dspace(S) ⊆ Dspace(max(1, ε · S(n))

for all functions S : N → R≥0 and all ε > 0.

1.4 The Gap Theorem

In this and the following section, we address the question whether one
is able to solve more problems when more ressources are provided. If S2

increases faster than S1, does this mean that Dspace(S2)) Dspace(S1)
(and analogously for time)? We will show that this does not hold in the
general case. Towards this, we will first prove the following lemma.

Lemma 1.19. Let M be a k-tape acceptor with max|x|=n spaceM(x) ≤
S(n) for almost all n (that is, all but finitely many) and let L(M) be the
set of all inputs accepted by M. Then, L(M) ∈ Dspace(S).

Proof. We build a k-tape acceptor M′ such that L(M′) = L(M) and
spaceM′ (x) ≤ S(|x|) for all x. The set X = {x : spaceM(x) > S(|x|)}
is finite by definition. Hence, for inputs x ∈ X, we can hard-code
the answer to x ∈ L(M) in the transition function M′ without using
additional space. q.e.d.

Theorem 1.20 (Gap Theorem). For any computable total function g :
N → N with g(n) ≥ n, there exists a computable function S : N → N

such that Dspace(S) = Dspace(g ◦ S).

Proof. Let M0, M1, . . . be a recursive enumeration of all Turing machines.
Consider the function Si(n) := max|x|=n spaceMi

(x) ∪ {∞} which re-
turns the space required by Turing machine Mi on words of length n.

Lemma 1.21. The set R := {(i, n, m) : Si(n) = m} is decidable.

Proof. For every triple (i, n, m), there is a time bound t ∈ N on compu-
tations of Mi which, on inputs of length at most n, use at most m tape

9

1.4 The Gap Theorem

Algorithm 1.1. S(n)

Input: n
y := 1
while there is an i ≤ n with (i, n, y) ∈ P do

choose the smallest such i
y := Si(n)

endwhile
S(n) := y

cells while no configuration occurs more than once. This bound t is com-
putable from (i, n, m). By simulating t steps of Mi on the (finitely many)
different inputs of length n, one can decide whether Si(n) = m. q.e.d.

We will use this result to construct a function S : N → N such that,
for every i ∈ N, either Si(n) ≤ S(n) for almost all n, or Si(n) ≥ g(S(n))
for infinitely many n. Towards this, consider the set P := {(i, n, y) ∈
N3 : y < Si(n) ≤ g(y)}. By Lemma 1.21 and since g is computable,
we obtain that P is decidable. Let S : N → N be the function defined
by Algorithm 1.1. As P is decidable, S is a computable total function. It
remains to show that

Dspace(g ◦ S) \Dspace(S) = ∅.

For any L ∈ Dspace(g ◦ S) we have L = L(Mi) for some i ∈ N. As L ∈
Dspace(g ◦ S), by definition Si(n) ≤ g(S(n)) holds for all n ∈ N. The
way S was constructed, we have Si(n) ≤ S(n) for all n ≥ i. Otherwise
S(n) < Si(n) ≤ g(S(n)) would hold for some i ≤ n, which is excluded
by the algorithm. Hence, Si(n) ≤ S(n) for almost all n and, according
to Lemma 1.19, we can conclude that L = L(Mi) ∈ Dspace(S). q.e.d.

Application. Consider g(n) = 2n. There exists a function S such that
Dspace(2S) = Dspace(S). That is, using more space does not necessarly
allow to solve more problems.

Analogously, one can show the follwing theorem on time complex-
ity.

10

1 Deterministic Turing Machines and Complexity Classes

Theorem 1.22 (Gap Theorem for time complexity). For every com-
putable function g, there exists a computable function T with
Dtime(T) = Dtime(g ◦ T).

Hence, there are computable functions f , g, h so that,

• Dtime(f) = Dtime(2 f).

• Dtime(g) = Dtime(22g
).

• Dtime(h) = Dtime

2
2··
·2
}

h(n) times

.

1.5 The Hierarchy Theorems

In the previous section, we have shown that increasing complexity
bounds does not always allow us to solve more problems. We will now
investigate under which conditions a complexity class is fully contained
in another one. As in the proof of the undecidability of the Halting
Problem for Turing machines, we will use a diagonalization argument.
The proof will be kept very general with a view to complexity measures
beyond time and space.

Let M be a class of abstract machines (e.g., 2-tape Turing machines)
and R a ressource defined for machines in M (e.g., time or space) such
that, for every machine M ∈ M and every input x, RM(x) ∈ N∪ {∞}
is defined. For a function T : N → N, R(T) denotes the complexity
class of all problems that machines in M with T-bounded ressource R
can decide:

R(T) = {L : there is an M ∈ M deciding L

with RM(x) ≤ T(|x|) for all x}.

Furthermore, we assume that there is an function ρ encoding
machines in M over the alphabet {0, 1} in such way that the structure
and computational behavior of M can be extracted effectively from
ρ(M).

Let T, t : N → N be functions, M1 and M2 classes of acceptors,

11

1.5 The Hierarchy Theorems

and R, r ressources defined for M1 and M2. We thus obtain the com-
plexity classes R(T) and r(t).

Definition 1.23. R(T) allows diagonalization over r(t) if there exists a
machine D ∈ M1 such that:

• D is T-bounded in ressource R and stops on every input. In other
words, L(D) ∈ R(T).

• For every machine M ∈ M2 that is t-bounded in ressource r,

ρ(M)#x ∈ L(D) ⇔ ρ(M)#x /∈ L(M).

holds for almost all x ∈ {0, 1}∗.

Theorem 1.24 (General Hierarchy Theorem). If R(T) allows diagonal-
ization over r(t), then R(T) \ r(t) ̸= ∅.

Proof. Let D be the diagonalization machine from Definition 1.23. We
will show that L(D) /∈ r(t). Otherwise, there would be a machine M
that is t-bounded in ressource r with L(D) = L(M). This, however, is
impossible since for almost all x:

ρ(M)#x ∈ L(D) ⇔ ρ(M)#x /∈ L(M)

holds. Therefore, L(M) ̸= L(D). q.e.d.

Definition 1.25. A function T : N → N is called fully time constructible
if there exists a Turing machine M such that timeM(x) = T(|x|) for all x.
Similarly, S : N → N is fully space constructible if spaceM(x) = S(|x|)
holds for some Turing machine M and all x.

Time and space constructible functions are “proper” functions
whose complexity is not much larger than their values. Most of the
functions we usually consider are fully time and space constructible.
Specifically, this is true for nk, 2n and n!. If two functions f and g have
this property, the functions f + g, f · g, 2 f and f g do as well.

Theorem 1.26. Let T, t : N → R≥0 such that T(n) ≥ n, with T time
constructible and t = o(T). Then Dtimek(t) (Dtime(T) for all k ∈ N.

12

1 Deterministic Turing Machines and Complexity Classes

Proof. We will show that Dtime(T) allows diagonalization over
Dtimek(t). Towards this, let D be a TM with the following proper-
ties:

(a) If M is a k-tape TM and x ∈ {0, 1}∗, then, on input ρ(M)#x, the
machine D simulates the computation of M on ρ(M)#ρ(x).

(b) For each M, there is a constant cM such that D needs at most cM

steps for the simulation of each step of M.

(c) At the same time, D simulates another TM N on separate tapes
which executes precisely T(n) steps on inputs of length n. By time
constructability of T, such a machine exists.

(d) After T(n) (n = |ρ(M)#x|) steps, D stops and accepts ρ(M)#x iff
the simulated computation of M on ρ(M)#x has rejected. Other-
wise, if M has already accepted or the computation has yet not
been completed, D rejects.

Let L(D) = {ρ(M)#x : D accepts ρ(M)#x}. We have:

• L(D) ∈ Dtime(T).

• For all M: T(n) ≥ cM · t(n) for almost all n (since t = o(T)).
Therefore, D can simulate the computation of M on ρ(M)#x for
almost all inputs ρ(M)#x in T(n) steps.

Thus, ρ(M)#x ∈ L(D) ⇐⇒ ρ(M)#x ̸∈ L(M). The claim follows from
the General Hierarchy Theorem. q.e.d.

Corollary 1.27 (Time Hierarchy Theorem). Let T(n) ≥ n, T be time-
constructible and t · log t = o(T). Then Dtime(t) (Dtime(T).

Proof. By Theorem 1.14, there is a constant c such that Dtime(t) ⊆
Dtime2(c · t · log t). If t · log t = o(T), then also c · t · log t = o(T) holds.
Thus, by Theorem 1.26, there is a language

L ∈ Dtime(T) \Dtime2(c · t · log t) ⊆ Dtime(T) \Dtime(t). q.e.d.

Applications. As T(n) = nd+1 is time-constructible for each d ∈ N and
t(n) = nd log nd = O(nd log n) = o(nd+1) = o(T(n)), the following

13

1.5 The Hierarchy Theorems

holds:

Dtime(nd) (Dtime(nd+1).

Corollary 1.28. For any time constructible and increasing function
f with limn→∞ f (n) = ∞, the class P of all problems decidable in
polynomial time is strictly included in Dtime(n f (n)). In particular,
P (Exptime.

Theorem 1.29 (Space Hierarchy Theorem). Let S, s : N → N be two
functions where S is space constructible and S(n) ≥ log n and s = o(S).
Then, Dspace(S) \Dspace(s) ̸= ∅.

Proof. As we can reduce, by Theorem 1.11, the number of working
tapes to one without increasing the space complexity, it is sufficient to
consider a TM with one input and one working tape. Since M is s-space
bounded, there are at most |Q| · (n + 1) · |Σ|s(n) · s(n) = (n + 1)2O(s(n))

different partial configurations of M. The machine M therefore stops
either after ≤ t(n) = 2cMs(n)+log(n+1) steps or it never halts. Here, cM

denotes a constant which depends on M but not on n. Since S is space-
constructible, there is a TM N with spaceN(x) = S(|x|) for all x. It
remains to show that Dspace(S) allows diagonalization over Dspace(s).
Consider the machine D that operates on input ρ(M)#x as follows:

(a) At first, mark a range of S(n) fields, by simulation of N. All
subsequent operations will take place within this range. If other
fields are accessed during the execution, D immediately stops and
rejects the input.

(b) D initializes a counter to t(n) and stores it on an extra tape.
(c) D simulates the computation of M on ρ(M)#x and decrements the

counter at every simulated step.
(d) If the simulation accesses a non-marked field or M does not stop

within t(n) steps, then D rejects the input ρ(M)#x. D also rejects if
M accepts the input ρ(M)#x. If D completes the simulation of a
rejecting computation of M on ρ(M)#x, then D accepts ρ(M)#x.

14

1 Deterministic Turing Machines and Complexity Classes

We obtain:

• L(D) ∈ Dspace(S).
• It remains to show: if M is s-space bounded, then D can simulate

the computation of M on ρ(M)#x for almost all x completely (or
t(n) steps of it).

– Because t(n) = 2O(s(n)+log n), s = o(S) and S(n) ≥ log n, the
counter t(n) can be encoded by a word of length S(n) for all
n that are large enough.

– Assuming M has an alphabet with d different symbols. Then
D needs ≤ log d fields to encode a symbol of M (note that this
factor only depends on M but not on the input length).

– For the simulation of M, the machine D needs at most space
log d · spaceM(ρ(M)#x) ≤ log d · s(n) ≤ S(n) for almost all n.

For all sufficiently large x, the following holds: ρ(M)#x ∈
L(D) ⇐⇒ ρ(M)#x ̸∈ L(M). Therefore, Dspace(S) allows diag-
onalization over Dspace(s). The claim follows with the General
Hierarchy Theorem. q.e.d.

Remark 1.30. As an immediate consequence we obtain Logspace (
Pspace. Thus, at least one of the inclusions Logspace ⊆ P ⊆ Pspace
must be strict. However, at the present time, we do not know whether
Logspace (P or P (Pspace.

15

