WS 09/10

Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, D. Fischer, T. Ganzow, B. Puchala

Complexity Theory and Quantum Computing — Assignment 11

Due: Monday, January 25, 12:00

Exercise 1

Consider the amplitude amplification by inversion about the mean as presented in the lecture, i.e., the transformation $|\varphi\rangle \mapsto \sum_{x \in \{0,1\}^n} (2\overline{a} - a_x) |x\rangle$. Prove that this transformation is linear and described by the matrix $H^{\otimes n} \cdot R_n \cdot H^{\otimes n}$ where $H^{\otimes n}$ is the *n*-fold tensor product of the Hadamard matrix with itself and R_n is the $2^n \times 2^n$ matrix given by

$$R_n |x\rangle = \begin{cases} |x\rangle & \text{for } x = 0 \dots 0\\ -|x\rangle & \text{for } x \in \{0,1\}^n \setminus \{0 \dots 0\} \end{cases}$$

Exercise 2

Let $f : \{0,1\}^n \to \{0,1\}$ be a function and let $T := \{x \mid f(x) = 1\}$. We define $|\varphi^+\rangle = \frac{1}{\sqrt{|T|}} \sum_{x \in T} |x\rangle$ and $|\varphi^-\rangle = \frac{1}{\sqrt{2^n - |T|}} \sum_{x \notin T} |x\rangle$. Moreover, let $\sin \vartheta_0 = \sqrt{\frac{|T|}{2^n}}$ and let $|\psi\rangle$ be the equal superposition of all basis state of H_{2^n} , i.e., $|\psi\rangle = H^{\otimes n} |0 \dots 0\rangle$.

- (a) Prove that $|\psi\rangle = \sin \vartheta_0 |\varphi^+\rangle + \cos \vartheta_0 |\varphi^-\rangle$.
- (b) Consider the mapping, induced by the Grover matrix on the two dimensional vector space with basis $(|\varphi^{-}\rangle, |\varphi^{+}\rangle)$. Prove that this mapping is described by the matrix

$$\begin{pmatrix} \cos(2\vartheta_0) & -\sin(2\vartheta_0) \\ \sin(2\vartheta_0) & \cos(2\vartheta_0) \end{pmatrix}$$

- (c) Prove that after r iterations of the Grover operator on $|\psi\rangle$, the quantum system is in the state $|\psi_r\rangle = \sin((2r+1)\vartheta_0)|\varphi^+\rangle + \cos((2r+1)\vartheta_0)|\varphi^-\rangle$.
- (d) Let $|T| < \frac{3}{4} \cdot 2^n$ and let $t := \lfloor \sqrt{2^n} \rfloor + 1$. Prove that the value $y \in \{0, 1\}^n$ which is chosen by the algorithm of Grover satisfies f(y) = 1 with a probability of $\frac{1}{2} \frac{\sin(4t\vartheta_0)}{4t\sin(2\vartheta_0)}$.
- (e) Prove the Theorem of Grover: There is a quantum algorithm which finds, with at most $O(\sqrt{2^n})$ queries to a given function $0 \neq f : \{0,1\}^n \to \{0,1\}$, a $y \in \{0,1\}^n$ such that f(y) = 1 with a probability of at least $\frac{1}{4}$.

Hint: Use (without proof) that for any $\alpha \in \mathbb{R}$ and any $m \in \mathbb{N}$, the following equations hold.

- $\sin(2\alpha) = 2\sin\alpha\cos\alpha$.
- $\sum_{r=0}^{m-1} \cos((2r+1)\alpha) = \frac{\sin(2m\alpha)}{2\sin\alpha}.$
- $\cos(2\alpha) = 1 2\sin^2\alpha$.