Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen Prof. Dr. E. Grädel, D. Fischer, T. Ganzow, B. Puchala

Complexity Theory and Quantum Computing — Assignment 8

Due: Monday, December 21, 12:00

Exercise 1

Prove the following claims:

(a) $NP^{BPP} \subseteq BPP^{NP}$.

Hint: Show that the language consisting of all words x#r such that x is accepted by a polynomial NTM M using a BPP oracle with random bit-sequence r is in NP. Consider, for a fixed sequence of random bits, the number of oracle queries for which the BPP oracle gives the wrong answer.

(b) $BPP^{BPP} = BPP$.

Hint: Consider a suitable simulation of the oracle machine.

(c) NP \subseteq BPP implies $\Sigma_2^p \subseteq$ BPP. Show that this implies PH \subseteq BPP.

Exercise 2

A non-deterministic Turing machine M is called standardised if it has, for each configuration, exactly two possible successor configurations, and if there is a polynomial p such that each computation path has a length of exactly p(n) (where n is the length of the input). Hence, the computation tree of such a machine M on an input x of length n is a full binary tree of depth n with $2^{p(n)}$ leaves. Each leaf is labelled by 0 or 1 to denote a rejecting or accepting state, respectively. If you read the labels from left to right, you obtain the word $M(x) \in \{0,1\}^{2^{p(n)}}$.

We introduce the following uniform model for defining complexity classes: Let $A, R \subseteq \{0, 1\}^*$ be a pair of disjoint so-called *leaf languages*. Then (A, R) defines the complexity class $\mathcal{C}[A, R]$ of those languages for which there exists a standardised non-deterministic Turing machine M such that $x \in L$ if, and only if, $M(x) \in A$ and $x \notin L$ if, and only if, $M(x) \in R$.

(a) Specify pairs (A, R) of leaf-languages such that C[A, R] corresponds to the following complexity classes: P, NP, NP \cap coNP, RP, coRP, ZPP, BPP, Σ_2^p , PSPACE.

Hint: Use the characterisation of classes in the Polynomial Hierarchy by alternating Turing machines.

- (b) For which of these classes can A and R be chosen such that $R = \bar{A}$?
- (c) Prove that C[A, R] = PSPACE if A is NLogSPACE-complete.

Exercise 3

Prove the following closure properties of probabilistic complexity classes:

- (a) PP, BPP, RP and ZPP are closed under polynomial-time reductions.
- (b) BPP and RP are closed under union and intersection.
- (c) PP is closed under complement and symmetric difference.

Hint: Eliminate the asymmetry in the definition concerning the acceptance probability of $^{1}/_{2}$. Show that, for every probabilistic TM M, there exists a PTM M' such that, for all inputs x, $\Pr[M'$ acc. $x] \neq ^{1}/_{2}$ and $\Pr[M'$ acc. $x] > ^{1}/_{2}$ if, and only if, $\Pr[M$ acc. $x] > ^{1}/_{2}$.