WS 09/10

Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, D. Fischer, T. Ganzow, B. Puchala

Complexity Theory and Quantum Computing — Assignment 7

Due: Monday, December 14, 12:00

Exercise 1

Let GEN be the problem from Assignment 4, Exercise 1, (b). Construct an explicit ALOGSPACEalgorithm for GEN.

Exercise 2

An ATM M with address tape uses one of the working tapes to address cells of the input tape. If M writes the number i in binary representation to the address tape, then the head on the input tape goes to cell number i in one step. This means, that M can read arbitrary bits of the input in logarithmic time. Therefore, it makes sense to define complexity classes ATIME(T(n)) for T(n) < n.

- (a) Give a precise definition of this machine model.
- (b) Prove that $PAL \in ALOGTIME = ATIME(O(\log n))$, where PAL is the problem from Assignment 2, Exercise 3.

Exercise 3

Let A, B and C be $n \times n$ matrices. The decision problem whether AB = C can obviously be solved in time $O(n^3)$. This trivial bound can be improved, however, no deterministic algorithm is known whichs solves this problem in time less than $O(n^{2.3})$. Now consider the following randomized algorithm.

input: A, B, C choose a vector $x \in \{-1, 1\}^n$ at random if $A(Bx) \neq Cx$: reject, else: accept.

Prove that this algorithm solves the problem with $O(n^2)$ arithmetical operations and with an error probability less than $\frac{1}{2}$.

Exercise 4

Prove the following fact: If NP \subseteq BPP, then RP = NP. *Hint*: First, prove that from a PTIME algorithm for SAT one can construct a PTIME algorithm which constructs, for a given satisfiable formula, a model of this formula. Now use the fact that from NP \subseteq BPP in particular it follows that SAT \in BPP.