Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen Prof. Dr. E. Grädel, D. Fischer, T. Ganzow, B. Puchala

Complexity Theory and Quantum Computing — Assignment 6

Due: Monday, December 07, 12:00

Exercise 1

A problem A is called polynomially Turing reducible to a problem B (denoted $A \leq_P^T B$) if $A \in P^B$, i.e., there is a deterministic polynomially time bounded Turing machine with oracle B which decides A. A complexity class \mathcal{C} is called closed under \leq_P^T if for each $B \in \mathcal{C}$ and for each problem A with $A \leq_P^T B$ we also have $A \in \mathcal{C}$. Which of the following complexity classes are closed under \leq_P^T ?

P, NP,
$$\Sigma_k^p$$
, Δ_k^p , PH, PSPACE

Exercise 2

Prove the following facts.

- (a) The set of Boolean formulas φ for which there is no equivalent Boolean formula ψ with $|\psi| < |\varphi|$ is in Π_2^p .
- (b) UNIQUE-TSP $\in \Delta_2^p$, where UNIQUE-TSP is the set of distance matrices for which there is a *unique* optimal tour (see assignment 1, exercise 3).

Exercise 3

If G = (V, E) is a finite graph, $VC_{path}(G)$ is the size of the largest set $X \subseteq V$ which is shattered by paths in G, i.e., for each $S \subseteq X$ there is a path in G which contains all vertices of S but no vertex of $X \setminus S$. PATH VC DIMENSION is the following problem: Given a finite graph G and a natural number k, is $VC_{path}(G) \ge k$? Prove that PATH VC DIMENSION is in Σ_3^p .

Exercise 4

We say that an alternating Turing machine M makes at most A(n) alternations if, for each input x of length n, on each computation path of M on x, the machine changes at most A(n) times from an existential state to a universal state or vice versa. For $k \in \mathbb{N}$ let $\mathcal{C}_k := \text{Atime-Alt}(\bigcup_{d \in \mathbb{N}} n^d, k)$ be the class of languages which can be decided by a polynomially time bounded alternating Turing machine which makes at most k alternations.

- (a) Explain the relationship between the classes C_k and the classes of the polynomial hierarchy.
- (b) Assume that there is a complete problem for the class C_k for some k. Which implications does this have for the polynomial hierarchy?