WS 09/10

Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, D. Fischer, T. Ganzow, B. Puchala

Complexity Theory and Quantum Computing — Assignment 4

Due: Monday, November 23, 12:00

Exercise 1

- (a) HORN-3SAT is the satisfiability problem for formulae $\psi = \bigwedge_i \bigvee_j Y_{ij}$ in CNF, that consist of Horn-clauses containing at most three literals each. Show that HORN-3SAT is P-complete (with respect to logspace-reductions).
- (b) Let A = {1,...,n} be a nonempty set, ∘ a binary function on A and S a subset of A. The closure ⟨S⟩ of S in A is the smallest subset U ⊆ A with S ⊆ U such that U is closed under ∘, i.e., if u, v ∈ U, then u ∘ v ∈ U.
 The problem GEN asks, given A, ∘, S and c ∈ A, whether c ∈ ⟨S⟩. Prove that GEN is P-complete. *Hint:* Prove that GEN ∈ P and HORN-3SAT ≤_{log} GEN.

Exercise 2

Prove that the class POLYLOGSPACE = $\bigcup_{d \in \mathbb{N}} DSPACE((\log n)^d)$ has no complete problems with respect to logspace reductions and that the class PTIME has no complete problems with respect to linear time reductions.

Exercise 3

Prove the following facts.

- (a) A language $L \subseteq \Sigma^*$ is NP-complete if, and only if, its complement $\overline{L} = \Sigma^* \setminus L$ is co-NP-complete.
- (b) $P \neq DSPACE(n)$.

Exercise 4

Prove the following facts.

- (a) NP = coNP if, and only if, there are $(NP \cup coNP)$ -complete problems.
- (b) $L \in NP \cap coNP$ if, and only if, L is decidable by an error-free polynomial-time bounded nondeterministic TM.