Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen Prof. Dr. E. Grädel, D. Fischer, T. Ganzow, B. Puchala

Complexity Theory and Quantum Computing — Assignment 3

Due: Monday, November 16, 12:00

Exercise 1

A function $t: \mathbb{N} \to \mathbb{N}$ is called time constructible, if there is a Turing machine M such that $\mathrm{Time}_M(x) = t(|x|)$ for each input x. Analogously, a function $s: \mathbb{N} \to \mathbb{N}$ is called space constructible, if there is a Turing machine M such that $\mathrm{Space}_M(x) = s(|x|)$ for each input x. Prove the following properties of time constructible functions.

- (a) For each computable function $f: \mathbb{N} \to \mathbb{N}$ there is a time constructible function t such that t(n) > f(n) for all $n \in \mathbb{N}$.
- (b) Each time constructible function is space constructible as well, but the converse is not true.

Exercise 2

Determine the order of the following complexity classes with respect to the subset relation: $DTIME(n^3)$, DTIME(n!), P, LOGSPACE, DSPACE($\log^2 n$), DSPACE($n \log n$). Prove proper inclusions if possible.

Exercise 3

A language $L \subseteq \Sigma^*$ is called context sensitive if it can be generated by a context sensitive grammar. A grammar G over an alphabet $\Gamma \supset \Sigma$ is a finite set of rules of the form $w \to w'$ with $w, w' \in \Gamma^*$. Moreover, there is a distinguished initial symbol $S \in \Gamma \setminus \Sigma$. G is called context sensitive if, for each rule $w \to w'$ of G, we have $|w| \leq |w'|$ (except for the rule $S \to \varepsilon$ if it is contained in G). A rule $w \to w'$ enables precisely the derivations of the form $uwv \to uw'v$ for any $u, v \in \Gamma^*$. The language generated by G in Σ^* is the set

 $L(G) = \{ w \in \Sigma^* \mid w \text{ can be derived from } S \text{ by a finite sequence of rules from } G \}.$

Finally, we define $CSL := \{L \mid L \text{ is context sensitive}\}$. Prove that $CSL \subseteq NSPACE(n)$.

Exercise 4

Prove that $NSPACE(n) \subseteq CSL$.

Hint: A language in NSPACE(n) can be decided by a nondeterministic Turing machine with a single tape and with a unique accepting configuration given by state q^+ , head position 0 and empty tape. Then, a configuration of this Turing machine can be represented as a word $w_0 \dots w_{p-1}(qw_p)w_{p+1}\dots$ over the alphabet $\Sigma \cup (Q \times \Sigma)$.

Remark: The result NSPACE(n) = CSL shows that the class of all context sensitive languages is closed under complement.