WS 09/10

Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, D. Fischer, T. Ganzow, B. Puchala

Complexity Theory and Quantum Computing — Assignment 2

Due: Monday, November 9, 12:00

Exercise 1

For $A \subseteq \mathbb{N}$ we consider the unary representation $UN(A) = \{1^n : n \in A\}$ and the binary representation $BIN(A) = \{bin(n) : n \in A\}$ of A. Prove the following facts.

(a) $UN(A) \in P$ if and only if $BIN(A) \in DTIME(2^{O(n)})$.

(b) $\text{UN}(A) \in \bigcup_{d \in \mathbb{N}} \text{DSPACE}(\log^d(n))$ if and only if $\text{BIN}(A) \in \text{PSPACE}$.

Exercise 2

- (a) It is known that DSPACE(0) = REG, i.e., Turing machines that do not write to the working tape recognize precisely the regular languages. Use this fact to prove that DSPACE(O(1)) = REG.
- (b) Let $L = {bin(1) \# bin(2) \# \dots \# bin(k) : k \in \mathbb{N}}$. Prove that L can be decided with space $O(\log \log n)$. Use this result to prove that REG \subseteq DSPACE $(O(\log \log n))$.

Exercise 3

Let $PAL = \{w \in \Sigma^* : w = \overleftarrow{w}\}$, where $\overleftarrow{w_0 \dots w_{n-1}} = w_{n-1} \dots w_0$, be the language of palindromes over a fixed alphabet Σ .

- (a) Prove that $PAL \in LOGSPACE$ and $PAL \in DTIME(O(n))$, and specify the respective timeand space-bounds of your algorithms.
- (b) Prove that a Turing machine that is only allowed to move the head on the input tape to the right cannot decide the language PAL with logarithmic space.

Exercise 4

Prove, using the Gap Theorem, that there exists a computable function f for which DSPACE(f) = DTIME(f).