
Algorithmic Model Theory
SS 2010

Prof. Dr. Erich Grädel

Mathematische Grundlagen der Informatik
RWTH Aachen

cbnd
This work is licensed under:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/
Dieses Werk ist lizenziert unter:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

© 2012 Mathematische Grundlagen der Informatik, RWTH Aachen.
http://www.logic.rwth-aachen.de

Contents

1 The classical decision problem for FO 1
1.1 Basic notions on decidability 2
1.2 Trakhtenbrot’s Theorem . 8
1.3 Domino problems . 15
1.4 Applications of the domino method 19

2 Finite Model Property 27
2.1 Ehrenfeucht-Fraïssé Games . 27
2.2 FMP of Modal Logic . 30
2.3 Finite Model Property of FO2 37

3 Descriptive Complexity 47
3.1 Logics Capturing Complexity Classes 47
3.2 Fagin’s Theorem . 49
3.3 Second Order Horn Logic on Ordered Structures 53

4 LFP and Infinitary Logics 59
4.1 Ordinals . 59
4.2 Some Fixed-Point Theory . 61
4.3 Least Fixed-Point Logic . 64
4.4 Infinitary First-Order Logic . 67

5 Modal, Inflationary and Partial Fixed Points 73
5.1 The Modal µ-Calculus . 73
5.2 Inflationary Fixed-Point Logic 76
5.3 Simultaneous Inductions . 81
5.4 Partial Fixed-Point Logic . 83
5.5 Capturing PTIME up to Bisimulation 86

6 Fixed-point logic with counting 93
6.1 Logics with Counting Terms 94
6.2 Fixed-Point Logic with Counting 95
6.3 The k-pebble bijection game . 98
6.4 The construction of Cai, Fürer and Immerman 100

7 Zero-one laws 109
7.1 Random graphs . 109
7.2 Zero-one law for first-order logic 111
7.3 Generalised zero-one laws . 116

6 Fixed-point logic with counting

The (machine-independent) characterisation of complexity classes by
logics (in the sense of Definition 3.4) yields deep insights into the
structure of the classified problems. The theorem of Fagin (cf. Chapter 3)
is a seminal result in the field of descriptive complexity theory, and
gives such a correspondence between algorithmic and logical resources
for the important class NP. If we restrict to ordered structures, we
can also find such characterisation for PTIME as shown e.g. in the
Immerman-Vardi theorem (cf. Chapter 4). However, it is still one of the
major open questions in finite model theory whether there is a logic
capturing PTIME on all finite structures. Note that if no such logic
exists this would necessarily imply PTIME ̸= ∃SO = NP.

As we will see, fixed-point logics, such as LFP or IFP, do not suffice
to capture PTIME on arbitrary structures, and most of the naturally
considered examples to separate them from PTIME involve some kind
of counting. For instance, the simple class EVEN = {A : |A| is even}
turns out to be not definable in LFP. Therefore Immerman proposed
that counting quantifiers should be added to logics and asked whether
a suitable variant of fixed-point logic with counting would suffice to
capture PTIME.

Although Cai, Fürer and Immerman eventually answered this
question negatively, the extension of fixed-point logic by counting
terms (FPC) has turned out to be an important and robust logic, that
defines a natural level of expressiveness. In this chapter we study the
logic FPC and present the construction of Cai, Fürer and Immerman
which yields the separation of FPC from PTIME. To be precise, we
even present a slightly more general result which uses the concept of
treewidth and which is due to Dawar and Richerby.

93

6 Fixed-point logic with counting

6.1 Logics with Counting Terms

There are different ways of adding counting mechanisms to a logic,
which are not necessarily equivalent. The most straightforward pos-
sibility is the addition of quantifiers of the form ∃≥2, ∃≥3, etc., with
the obvious meaning. While this is perfectly reasonable for bounded-
variable fragments of first-order logic or infinitary logic it does not
increase the expressiveness of logics such as FO or LFP, since they are
closed under the replacement of ∃≥i by i existential quantifiers. For
fixed-point logic another severe restriction is that it does not allow for
recursion over the counting parameters i in quantifiers ∃≥ix. These
counting parameters should therefore be considered as variables that
range over natural numbers. To define in a precise way a logic with
counting and recursion, one extends the original objects of study, namely
finite (one-sorted) structures A, to two-sorted auxiliary structures A∗

with a second numerical (but also finite) sort.

Definition 6.1. With any one-sorted finite structure A with universe A,
we associate the two-sorted structure A∗ := A ∪̇ ⟨{0, . . . , |A|};≤, 0, e⟩,
where ≤ is the canonical ordering on {0, . . . , |A|}, and 0 and e stand for
the first and the last element. Thus, A∗ is the disjoint union of A with a
linear order of length |A|+ 1.

For all logics we studied so far, we naturally obtain two-sorted vari-
ants definining properties of the extended structures A∗. For instance,
formulas of two-sorted first-order logic over two-sorted vocabularies
σ ∪ {≤, 0, e} are evaluated in structures A∗ where semantics are defined
in the obvious way. From now on, we stick to the convention to use
Latin letters x, y, z, . . . for the variables over the first sort, and Greek
letters λ, µ, ν, . . . for variables over the second sort (the numerical sort).
In counting logics, these two sorts are related by counting terms, defined
by the following rule. Let ϕ(x) be a formula with a variable x (over the
first sort) among its free variables. Then #x[ϕ] is a term in the second
sort, with the set of free variables free(#x[ϕ]) = free(ϕ) − {x}. The
value of #x[ϕ] is the number of elements a that satisfy ϕ(a).

We introduce counting logics starting with first-order logic with

94

6.2 Fixed-Point Logic with Counting

counting, denoted by FOC, which is the closure of two-sorted first-
order logic under counting terms. Here are two simple examples that
illustrate the use of counting terms.

Example 6.2. On an undirected graph G = (V, E), the formula
∀x∀y(#z[Exz] = #z[Eyz]) expresses the assertion that every node has
the same degree, i.e., that G is regular.

Example 6.3. We present below a formula ψ(E1, E2) ∈ FOC which ex-
presses the assertion that two equivalence relations E1 and E2 are
isomorphic; of course a necessary and sufficient condition for this is
that for every i, they have the same number of elements in equivalence
classes of size i:

ψ(E1, E2) ≡ (∀µ)(#x[#y[E1xy] = µ] = #x[#y[E2xy] = µ]).

6.2 Fixed-Point Logic with Counting

We now define (inflationary) fixed point logic with counting (FPC) and
partial fixed point logic with counting PFPC by adding to FOC the usual
rules for building inflationary or partial fixed points, ranging over both
sorts.

Definition 6.4. Inflationary fixed point logic with counting, FPC, is the
closure of two-sorted first-order logic under the following rules:

(1) The rule for building counting terms.

(2) The usual rules of first-order logic for building terms and formulae.

(3) The fixed-point formation rule. Suppose that ψ(R, x, µ) is a formula
of vocabulary τ ∪ {R} where x = x1, . . . , xk, µ = µ1, . . . , µℓ, and R
has mixed arity (k, ℓ), and that (u, ν) is a k + ℓ-tuple of first- and
second-sort terms, respectively. Then

[ifp Rxµ . ψ](u, ν)

is a formula of vocabulary τ.

The semantics of [ifp Rxµ . ψ] on A∗ is defined in the same way as

95

6 Fixed-point logic with counting

for the logic IFP, namely as the inflationary fixed point of the operator

Fψ : R 7−→ R ∪ {(a, i) | (A∗, R) |= ψ(a, i)}.

The definition of PFPC is analogous, where we replace inflationary
fixed points by partial ones. In the literature, one also finds different
variants of fixed-point logic with counting where the two sorts are
related by counting quantifiers rather than counting terms. Counting
quantifiers have the form (∃i x) for ‘there exist at least i different x’,
where i is a second-sort variable. It is obvious that the two definitions
are equivalent. In fact, FPC is a very robust logic. For instance, its
expressive power does not change if one permits counting over tuples,
even of mixed type, i.e. terms of the form #x,µ ϕ (see exercise class). One
can of course also define least fixed-point logic with counting, LFPC,
but one has to be careful with the positivity requirement (which is more
natural when one uses counting quantifiers rather than counting terms).
The equivalence of LFP and IFP readily translates to LFPC ≡ IFPC.

Example 6.5. An interesting example of an FPC-definable query is the
method of stable colourings for graph-canonization. Given a graph G
with a colouring f : V → {0, . . . , r} of its vertices, we define a refine-
ment f ′ of f , giving to a vertex x the new colour f ′x = (f x, n1, . . . , nr)

where ni = #y[Exy ∧ (f y = i)]. The new colours can be sorted lex-
icographically so that they again form an initial subset of N. Then
the process can be iterated until a fixed point, the stable colouring of
G is reached. It is easy to see that the stable colouring of a graph is
polynomial-time computable and uniformly definable in FPC.

On many graphs, the stable colouring uniquely identifies each
vertex, i.e. no two distinct vertices (i.e. vertices in different orbits of the
automorphism group) get the same stable colour. In this way stable
colourings provide a polynomial-time graph canonization algorithm for
such classes of graphs. For instance, this is the case for the class of all
trees or, more generally, any class of graphs with bounded treewidth.

We now discuss the expressive power and evaluation complex-
ity of fixed-point logic with counting. We are mainly interested in
FPC-formulae and PFPC-formulae without free variables over the sec-

96

6.2 Fixed-Point Logic with Counting

ond sort, so that we can compare them with the usual logics without
counting.

Exercise 6.1. Even without making use of counting terms, IFP over
two-sorted structures A∗ is more expressive than IFP over A. To prove
this, construct a two-sorted IFP-sentence ψ such that A∗ |= ψ if, and
only if, |A| is even.

It is clear that counting terms can be computed in polynomial-time.
Hence the data complexity remains in PTIME for FPC and in PSPACE
for PFPC. We shall see below that these inclusions are strict.

Theorem 6.6. On finite structures,

(1) IFP (FPC (PTIME.
(2) PFP (PFPC (PSPACE.

6.2.1 Infinitary Logic with Counting

Let Ck
∞ω be the infinitary logic with k variables Lk

∞ω , extended by the
quantifiers ∃≥m (‘there exist at least m’) for all m ∈ N. Further, let
Cω

∞ω :=
⋃

k Ck
∞ω .

Proposition 6.7. PFPC ⊆ Cω
∞ω .

Due to the two-sorted framework, the proof of this result is a bit
more involved than for the corresponding result without counting, but
not really difficult (see exercise class).

The separation of FPC from PTIME has been established by Cai,
Fürer, and Immerman. Their proof also provides an analysis of the
method of stable colourings for graph canonization. We have described
this method in its simplest form in Example 6.1. More sophisticated
variants compute and refine colourings of k-tuples of vertices. This is
called the k-dimensional Weisfeiler–Lehman method and, in logical terms,
it amounts to labelling each k-tuple by its type in k + 1-variable logic
with counting quantifiers. It was conjectured that this method could
provide a polynomial-time algorithm for graph isomorphism, at least
for graphs of bounded degree. However, Cai, Fürer, and Immerman
were able to construct two families (Gn)n∈N and (Hn)n∈N of graphs

97

6 Fixed-point logic with counting

such that on one hand, Gn and Hn have O(n) nodes and degree three,
and admit a linear-time canonization algorithm, but on the other hand,
in first-order (or infinitary) logic with counting, Ω(n) variables are
necessary to distinguish between Gn and Hn. In particular, this implies
Theorem 6.6.

6.3 The k-pebble bijection game

In Chapter 2 we introduced Ehrenfeucht-Fraïssé games to characterize
the equivalence of structures (or, to put it in another way, definability of
classes) in first-order logic. More specifically, two relational structures A
and B can be distinguished by an FO-sentence of quantifier-rank ≤ m if,
and only if, Spoiler has a winning strategy in the m-move Ehrenfeucht-
Fraïssé game played on A and B which was denoted by EFm(A,B).

Our next aim is to introduce the k-pebble bijection game which is
an extension of the standard Ehrenfeucht-Fraïssé game to capture de-
finability in Cω

∞ω . We will use these games to show that a certain
(polynomial-time decidable) class of graphs is not definable in Cω

∞ω . In
particular, this yields the separation of FPC from PTIME by Proposi-
tion 6.7.

Definition 6.8. The k-pebble bijection game k-BG(A,B) is a two-player
game played on relational structures A and B using k pairs of peb-
bles (x1, y1), . . . , (xn, yn) that can be placed on pairs of elements
(a1, b1), . . . , (an, bn) ∈ A× B during a play. The goal of Player I, who is
called Spoiler, is to show that A ̸≡Ck

∞ω B while Player II, the Duplicator,
claims that A ≡Ck

∞ω B.

A position in the game k-BG(A,B) is a (partial) assignment
(a1, b1), . . . , (an, bn) of pebbles on A × B, so formally, a position is a
(partial) mapping p : {1, . . . , k} → A× B. The initial position is p = ∅.

At position p a play proceeds as follows: First, Spoiler selects a
pair of pebbles i ≤ k. Duplicator has to react with a bijection h : A→ B
which respects all remaining pairs of pebbled elements (except for i), i.e.
for all i ̸= j ∈ dom(p) and p(j) = (aj, bj) we have h(aj) = bj. Spoiler

98

6.3 The k-pebble bijection game

then chooses a ∈ A and the position is updated to (p|i 7→ (ai, bi)) where

(p|i 7→ (ai, bi))(j) :=

p(j) j ̸= i

(a, h(a)) j = i.
.

Spoiler wins a play, if either |A| ̸= |B| (i.e. Duplicator cannot respond
with a bijection), or the play eventually reaches a position p such that
the induced mapping p({1, . . . , k}) is not a partial isomorphism of
A and B, i.e. if p({1, . . . , k}) ̸∈ Loc(A,B). Infinite plays are won by
Duplicator.

Theorem 6.9. If Duplicator wins the game k-BG(A,B), then A ≡Ck
∞ω B.

Proof. We prove by induction that for all formulae ϕ(x1, . . . , xk) ∈ Ck
∞ω ,

structures A and B and all a1, . . . , ak ∈ A and b1, . . . , bk ∈ B we have
that if A |= ϕ(a1, . . . , ak) and B ̸|= ϕ(a1, . . . , ak) then Spoiler has a
winning strategy for k-BG(A,B) starting from position p(i) = (ai, bi).

The cases of quantifier-free formulae, Boolean connectivities and
first-order quantifier follow as in the case of Ehrenfeucht-Fraïssé games
(cf. lecture notes of mathematical logic). Hence, we only consider
ϕ = ∃≥ixjψ(x1, . . . , xk). For this case, a winning strategy for Spoiler
can be defined in the following way:

• Spoiler selects the pair j ≤ k.

• Duplicator reacts with a bijection h : A→ B respecting the remain-
ing pebbled pairs.

We set X = {a ∈ A : A |= ψ(a1, . . . , an)} and Y = {b ∈ B : B |=
ψ(b1, . . . , bn)}. From the assumption we know that |X| ≥ i and |Y| <
i, hence there is an a ∈ X such that h(a) ̸∈ Y. Spoiler selects the
element a and the position is updated to (p|j 7→ (aj, bj)). As we have
A |= ϕ(a1, . . . , an) and B ̸|= ϕ(b1, . . . , bj−1, h(a), bj+1, . . . , bn) the claim
follows by induction. q.e.d.

We can use Theorem 6.9 to show that a class K of finite structures
is not definable in Cω

∞ω . In particular, note that K ̸∈ Cω
∞ω also implies

that K ̸∈ FPC since we have FPC ≤ Cω
∞ω .

99

6 Fixed-point logic with counting

Proposition 6.10. Let (Ak)k≥1 and (Bk)k≥1 be two sequences of struc-
tures such that for infinitely many k we have Ak ∈ K, Bk ̸∈ K and
Duplicators wins k-BG(Ak,Bk). Then K cannot be defined in Cω

∞ω .

6.4 The construction of Cai, Fürer and Immerman

We now present the construction of Cai, Fürer and Immmerman which
yields the separation of FPC from PTIME. Throughout this section, let
G = (V, E) denote a connected graph with deg(v) ≥ 2 for all v ∈ V.
Starting from G we define a family of graphs (XS(G))S⊆E that result by
replacing every vertex v in a G by a gadget Z(v) and interconnecting
different gadgets according to edge relation in G.

For every v we define the set of new vertices Z(v) as

Z(v) := {avw, bvw, cvw, dvw : w ∈ vE} ∪ {vX : X ⊆ vE, |X| even}.

Vertices of the form avw, bvw are called outer vertices and they are
intended to connect the two gadgets Z(v) and Z(w). The vertices
cvw, dvw are colour vertices which are used only to make the set of outer
nodes first-order definable. The remaining vertices vS are called the
inner vertices.

Let X∅(G) denote the graph over the vertex set
⋃

v∈V Z(v) with
the following edges:

• (avw, cvw), (bvw, cvw), (dvw, cvw) for (v, w) ∈ E,
• (avw, vX) for w ∈ X,
• (bvw, vX) for w ̸∈ X, and
• (avw, awv) and (bvw, bwv) for all (v, w) ∈ E.

In Figure 6.1 the construction of a gadget Z(v) is illustrated for the
case of a vertex v with degree three. The pairs of outer nodes avx, bvx,
avy, bvy and avz, bvz are connected to the corresponding outer nodes of
the gadgets Z(x), Z(y) and Z(z), respectively (this is indicated by the
dashed lines in the figure).

We now extend the construction: for any (symmetric) set S ⊆ E
we define XS(G) to be the graph X∅(G) in which for all (v, w) ∈ S the
edges (avw, awv) and (bvw, bwv) are replaced by (avw, bwv) and (awv, bwv).

100

6.4 The construction of Cai, Fürer and Immerman

v

xy

z

v∅ v{x,y} v{x,z} v{y,z}

Figure 6.1. Example: gadget for a vertex v of degree three

We say that the edges in S have been twisted. In this way we obtain for
every subset S ⊆ E of edges a CFI-graph XS(G). Interestingly, we are
going to show that these CFI-graphs XS(G) are completely determined
by the parity of the set S:

Lemma 6.11. For all S, T ⊆ E we have:

XS(G) ∼= XT(G) ⇔ |S| ≡ |T| mod 2.

Before we prove this claim in general, we consider some special
cases. First of all, let all twisted edges be incident with a single vertex v.

Lemma 6.12. Let S, T ⊆ vE be sets of neighbours of some vertex v ∈ V.
If S∆T = (S \ T) ∪ (T \ S) is even, then

Xv×S(G) ∼= Xv×T(G).

Proof. The mapping πv;S;T : Xv×S(G)→ Xv×T(G) defined by

πv;S;T(z) :=

z, z ̸∈ Z(v) or z colour vertex,

z, z ∈ {avw, bvw}, w ∈ S ∩ T,

bvw, z = avw, w ∈ S∆T,

avw, z = bvw, w ∈ S∆T,

vX∆(S∆T), z = vX ,

is an isomorphism (use that since X and S∆T are even, the same holds
for the symmetric difference X∆(S∆T)). q.e.d.

101

6 Fixed-point logic with counting

We proceed to explain how one obtains an isomorphism between
X{e}(G) and X{ f }(G) for two distinct edges e and f of G.

Lemma 6.13. X{e}(G) ∼= X{ f }(G).

Proof. If e and f are incident with the same vertex v, then the claim
follows by Lemma 6.12. Hence, let e = (u, v) and f = (x, y) be such that
{u, v} ∩ {x, y} = ∅. Choose a path v = v1, v2, . . . , vℓ = x connecting v
and x with vi ̸∈ {u, y} for all i ≥ 1. Then

πe 7→ f := πv1;u;v2 ◦ πv2;v1;v3 ◦ · · · ◦ πvl−1;vl−2;x ◦ πvl ;vl−1;y,

is an isomorphism of X{e}(G) ∼= X{ f }(G): the twist at edge (u, v) is
moved along the path to the twist at edge (x, y) where both twists
cancel out each other. Note than along the path, at every inner node vi

we have precisely two twists of edges for the gadget Z(vi) which, again
by Lemma 6.12, preserves the structure of the inner nodes. q.e.d.

We are now ready to prove Lemma 6.11.

Proof (of Lemma 6.11). First of all, let |S| ≡ |T| mod 2. If |S| = |T| = 1,
then the claim follows by Lemma 6.13, so assume that |S| ≥ 2 (or
analogously, |T| ≥ 2). Choose e, f ∈ S with e ̸= f . If e and f are
incident with the same vertex v ∈ V we know that XS\{e, f }(G) ∼= XS(G)

by Lemma 6.13. In the other case, we use the isomorphism πe 7→ f and
see that XS\{e, f }(G) ∼= XS(G). The claim follows by induction on |S∆T|.

For the other direction assume that π : X{ f=(x,y)}(G)→ X∅(G) is
an isomorphism. Clearly, π maps outer (inner, colour) nodes to outer
(inner, coulour) nodes, and since π also induces an isomorphism of
G, we can assume that for all v ∈ V we have π(Z(v)) = Z(v) and
π({avw, bvw}) = {avw, bvw} for all (v, w) ∈ E. At this point we observe
that if π interchanges avw and bvw it necessarily interchanges awv and
bwv for all edges (v, w) ∈ E except for (x, y). Hence, the total number
of interchanges of a’s and b’s in π is odd. This contradicts, Lemma 6.12,
however, as the number of interchanges of a’s and b’s in π for each
gadget has to be even. q.e.d.

102

6.4 The construction of Cai, Fürer and Immerman

We conclude that, up to isomorphism, there are precisely two
CFI-graphs for G and we fix two canonical representatives from the
isomorphism classes:

• X(G) := X∅(G) (the even CFI-graph for G)
• X̃(G) := X{e}(G) for some edge e ∈ E (the odd CFI-graph for G)

The CFI-query is to decide, given a CFI-graph XS(G), whether XS(G) is
even or odd, i.e. whether XS(G) ∼= X(G) or XS(G) ∼= X̃(G).

Theorem 6.14. The CFI-query can be decided in polynomial time.

Proof. In order to count the number of twists, we need to identify the
a and b-vertices. To this end it suffices to fix in every gadget Z(v)
an arbitrary inner node and to associate the intended labeling to the
gadget Z(v) (e.g. declare this node to be v∅ and assign to all connected
vertices b-labels and to the remaining outer ones a-labels). Then it is
straightforward to count the number of twists modulo two. Lemma 6.11
guarantees that the isomorphism class of the resulting {a, b}-labeled
graph is independent of the initial choice of inner vertices. q.e.d.

We conclude that the even and odd CFI-graphs can be distin-
guished in polynomial time. However, we are going to show that they
cannot be separated by sentences in Cω

∞ω if we start from a class of
graphs G with sufficient complexity. In order to measure the complex-
ity of graphs we introduce the important and well-studied concept of
treewidth. Intuitively the treewidth of a graph formalises to what extent
an (undirected) graph resembles a tree, and one of the reasons for its im-
portance is that many NP-hard problems (and even some PSPACE-hard
ones) become tractable on classes of graphs with bounded treewidth.
There are various equivalent ways to characterize the treewidth of a
graph, of which we sketch two: an algebraic and a game theoretic
approach.

Definition 6.15. Let G = (V, E) be an undirected graph. A tree decom-
position of G is an undirected tree T = (T, ET) where T is a family of
subsets of V, i.e. T ⊆ P(V) and

(a)
⋃

T = V, and

103

6 Fixed-point logic with counting

(b) for all (u, v) ∈ E there is some X ∈ T so that {u, v} ⊆ X, and

(c) for every vertex v ∈ V the set {X ∈ T : v ∈ X} is connected in T .

Nodes in the tree T are called bags. The width of the tree decompo-
sition T = (T, ET) is (max{|X| : X ∈ T} − 1), and the treewidth of G,
denoted by tw(G), is defined to be the minimal width for which a tree
decomposition of G exists.

Next, we describe a game which characterises the notion of
treewidth. The k-cops and robber game on G is played by two play-
ers, Player I (the cops) and Player II (the robber). The rules are as
follows: the cops possess k pebbles (cops) which they can place on
vertices of the graph. The robber has one pebble which is moved along
paths. In each move the cops first choose some pebble which is either
currently not placed on a vertex of the graph or which is removed from
its current position w. Secondly, the cops determine a vertex v to be the
new position for this pebble. After that, the robber reacts by moving
his pebble along a path to a new vertex (which may be the old one).
The chosen path has to be cop-free where the vertices v and w count as
cop-free for the current move. The cops win a play if, and only if, they
can reach a position such that the robber cannot move. All other plays,
i.e. all infinite ones, are won by the robber.

Seymour proved that a graph G has treewidth k if, and only if, the
cops have a winning strategy in the game with k + 1 pebbles, but the
robber wins the game if the cops are restricted to k pebbles. We use this
game-theoretic characterisation of to show:

Theorem 6.16. Let G = (V, E) be graph with δ(G) ≥ 2 and tw(G) ≥ k,
here δ(G) denotes the minimal vertex degree in G. Then

X(G) ≡Ck
∞ω X̃(G).

Proof. For two vertices u, v let σ[u, v] be the permutation which ex-
changes u and v and fixes all other points. We say that a bijection
h : X(G)→ X̃(G) is good except at node u ∈ V if

• h(Z(v)) = Z(v) for all v ∈ V,

104

6.4 The construction of Cai, Fürer and Immerman

• h maps inner vertices to inner vertices and outer vertices to outer
vertices,

• h is an isomorphism between the subgraphs X(G) \ {vX : X ⊆ vE}
and X̃(G) \ {vX : X ⊆ vE}, and

• for every pair (auv, buv) ∈ Z(u), the mapping h ◦ σ[auv, buv] is an
isomorphism from X(G)[Z(u)] to X̃(G)[Z(u)].

Let X̃(G) = X(u,v)(G). Then for instance σ[auv, buv] is good except
at u and σ[avu, bvu] is good except at v. Note that if η ∈ Aut(X̃(G))

with η(Z(v)) = Z(v) for all v ∈ V and h is good except at vertex u,
then h ◦ η is good except at u as well.

The property of being good at some vertex can be propagated
along path in G: let P be a simple path in G from u to v, P : u =

v1, v2, . . . , vl−1, vl = v, and let h be a bijection which is good except at
vertex u. Then the bijection h′ := h ◦ ηP where

ηP := σ[auv2 , buv2] ◦ πv2;v1;v3 ◦ · · · ◦ πvℓ−1;vℓ−2;vℓ ◦ σ[avvℓ−1 , bvvℓ−1],

is good except at v and for w ̸∈ P, x ∈ Z(w) we have h′(x) = h(x).

Finally, we describe a winning strategy for Duplicator in the k-
pebble bijection game played on X(G) and X̃(G). The strategy satisfies
that pairs of pebbles (ai, bi) are always placed on vertices in a common
gadget Z(v). First of all, we initialize an instance of the k-cops and
robber game played on G where we identify each of the k pairs of
pebbles with one of the cops, and we assume that the robber makes his
moves according to a fixed winning strategy (recall that tw(G) ≥ k).
The positions in the two games are related as follows: the vertex in G
occupied by the i-th cop is precisely the vertex v ∈ V for which the
corresponding gadget Z(v) in X(G) and X̃(G) is pebbled with the i-th
pair (ai, bi) of pebbles in the k-pebble bijection game. We update the
positions in the cops and robber game after each round of the k-pebble
bijection game accordingly. Furthermore, whenever the robber is at
some vertex v ∈ V, then Duplicator chooses in her current move some
bijection which is good except at vertex v. For convenience, we assume
that the robber starts at node u, and that in the first round Duplicator

105

6 Fixed-point logic with counting

answers with the bijection σ[auv, buv]. Recall that this bijection is good
except at vertex u.

We proceed to show that Duplicator can maintain the following
invariant during each play: let ((a1, . . . , ak), (b1, . . . , bk)) be the current
position in the k-pebble bijection game, then

there is a bijection g : X(G)→ X̃(G) with g(ai) = bi for i ≤ k such that
g is good except at a vertex u ∈ V and for i ≤ k we have ai, bi ̸∈ Z(u)

(u is the robber’s position in the cops and robber game).

This can be seen as follows: assume Spoiler chooses the i-th pair of
pebbles. Duplicator answers with the bijection g and Spoiler puts the
i-th pair of pebbles onto some tuple (a, g(a)). By the condition on g of
being good except at u, the new position in the k-pebble bijection game
is indeed a partial isomorphism (g is an isomorphism except at gadget
Z(u), and Spoiler would need more than one pebble there to uncover
the difference). The move of Spoiler induces an update for the ith cop
in the cops and robber game, which yields a respond of the robber
according to his winning strategy, i.e. a move along a cop-free path P
to some vertex v. Hence, as shown above, the bijection g′ := g ◦ ηP

respects all pebbled pairs of elements and is good except at v. Since,
Z(v) is cop-free (and hence not pebbled), the claim follows. q.e.d.

Theorem 6.17. FPC (PTIME on every class of graphs which contains
CFI-graphs X(G) and X̃(G) for graphs G of arbitrary large treewidth.

In fact, Grohe and Marino proved that FPC ≡ PTIME on every
class of graphs with bounded treewidth. Their theorem allows us to
reformulate the result in a very neat way.

Let ∆(G) denote the maximal vertex degree in a graph G. We first
observe that for classes of graphs with ∆(G) bounded the treewidth
of X(G) is bounded by O(tw(G)): from a tree-decomposition of G
one obtains a tree decomposition of X(G) by replacing in all bags
the vertices by their corresponding gadgets. Furthermore, the size of
a gadget Z(v) in X(G) is bounded by (4∆(G) · 2∆(G)−1) ∈ O(∆(G)).

106

6.4 The construction of Cai, Fürer and Immerman

Now let Gn be the n× n grid, then tw(Gn) = n, ∆(Gn) = 4 and

tw(X(G)) ≤ (4∆(G) · 2∆(G)−1) tw(Gn) = 24n ∈ O(|G|).

For a function f : N→N we define the class of graphs

TW f := {G : tw(G) ≤ f (|G|)}.

Theorem 6.18. FPC ≡ PTIME on TW f if, and only if, f ∈ O(1).

Proof. The direction from right two left is mentioned theorem due to
Marino and Grohe. For the other direction, assume f ̸∈ O(1); then for
every n > 0, there exists k > |X(Gn)| with f (k) ≥ 24n. Hence, TW f

contains X(Gn) and X̃(Gn) for every n ≥ 0. q.e.d.

107

