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4 LFP and Infinitary Logics

One of the distinguishing features of finite model theory compared
with other branches of logic is the eminent role of various kinds of
fixed-point logics. Fixed-point logics extend a basic logical formalism
(such as first-order logic, conjunctive queries, or propositional modal
logic) by a constructor for expressing fixed points of relational operators.

What do we mean by a relational operator? Note that any formula
ψ(R, x) of vocabulary τ ∪ {R} where R is a relational symbol of arity k
and x is a k-tuple of variables that are free in ψ can be viewed as defining,
for every τ-structure A, an update operator Fψ : P(Ak) → P(Ak) on
the class of k-ary relations on A, namely

Fψ : R 7→ {a : (A, R) |= ψ(R, a)}.

A fixed point of Fψ is a relation R for which Fψ(R) = R. In general,
a fixed point of Fψ need not exist, or there may exist many of them.
However, if R happens to occur only positively in ψ, then the operator
Fψ is monotone, and in that case there exists a least relation R ⊆ Ak

such that Fψ(R) = R. The most influential fixed-point formalisms in
logic are concerned with least (and greatest) fixed points, so we shall
discuss these first. We start by reviewing the necessary mathematical
foundations and we also show how least fixed-point logic is related to
infinitary first-order logic.

4.1 Ordinals

The standard basic notion used in mathematics is the notion of a set,
and all mathematical theorems follow from the axioms of set theory. The
standard set of axioms is known as Zermelo-Fraenkel Set Theory ZF. These
axioms guarantee, for instance, the existence of an empty set, an infinite
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4 LFP and Infinitary Logics

set, the power set of any set, and that no set is a member of itself (i.e.
∀x ¬x ∈ x). It is common in mathematics to extend ZF by the axiom of
choice AC and to denote the resulting set of axioms by ZFC.

In particular, the notion of numbers can be formalised by sets. The
standard way to do this is to start with the empty set, i.e. let 0 = ∅, and
proceed by induction, defining n + 1 = n ∪ {n}. Here are the first few
numbers in this representation:

• 0 = ∅,
• 1 = {∅},
• 2 = {∅, {∅}},
• 3 = {∅, {∅}, {∅, {∅}}}.

In this way we can construct all natural numbers. Observe that for each
such number n (viewed as a set) it holds that

m ∈ n =⇒ m ⊆ n.

In particular, the relation ∈ is transitive in such sets, i.e. if k ∈ m and
m ∈ n then k ∈ n. We use this property of sets to define a more general
class of numbers.

Definition 4.1. A set α is an ordinal number if ∈ is transitive in α.

Besides natural numbers, what other ordinal numbers are there?
The smallest example is ω =

⋃
n∈N n, the union of all natural numbers.

Indeed, it is easy to check that the union of ordinals is always an ordinal
as well (as long as it is a set).

What is the next ordinal number after ω? We can again apply the
+1 operation in the same way as for natural numbers, so

ω + 1 = ω ∪ {ω} = {0, 1, 2, . . . , {0, 1, . . .}}.

But does it make sense to say that ω + 1 is the next ordinal, or, to
put it more generally: is there an order on ordinals? In fact both, each
ordinal as a set and all ordinals as a class, are well-ordered, i.e. the
following holds:

• for any two ordinal numbers α and β either α ⊆ β or β ⊆ α;
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4.2 Some Fixed-Point Theory

• there exists no infinite descending sequence of ordinals

α0 ) α1 ) α3 ) · · · ;

• each ordinal α is well-ordered by ∈.

Ordinals are intimately connected to well-orders, in fact any struc-
ture (A,<) where < is a well-order is isomorphic to some ordinal α.
To get an intuition on how ordinals look like, consider the following
examples of countable ordinals: ω + 1, ω + ω, ω2, ω3, ωω .

The well-order of ordinals allows to define and prove the principle
of transfinite induction. This principle states that the class of all ordinals
is generated from ∅ by taking the successor (+1) and the union on limit
steps, as shown on the examples before. Specifically, for each ordinal α

it holds that either

• there exists an ordinal β < α such that α = β + 1 = β ∪ {β}, or
• there exist ordinals βγ < α such that α =

⋃
γ βγ.

Besides ordinals, we sometimes need cardinal numbers Cn which
formalise the notion of cardinalities of sets. A cardinal number κ ∈ Cn
is a smallest ordinal number, i.e. κ is an ordinal number with which no
strictly smaller ordinal number can be put into bijection. For example,
every natural number and ω itself are cardinal numbers, but ω2 ̸∈ Cn.
We denote the class of infinite cardinal numbers by Cn∞.

4.2 Some Fixed-Point Theory

There is a well-developed mathematical theory of fixed points of mono-
tone operators on complete lattices. A complete lattice is a partial order
(A,≤) such that each set X ⊆ A has a supremum (a least upper bound)
and an infimum (a greatest lower bound). Here we are interested
mainly in power set lattices (P(Ak),⊆) (where A is the universe of a
structure), and later in product lattices (P(B1)× · · · × P(Bm),⊆). For
simplicity, we shall describe the basic facts of fixed-point theory for
lattices (P(B),⊆), where B is an arbitrary (finite or infinite) set.

Definition 4.2. Let F : P(B)→ P(B) be an operator.
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4 LFP and Infinitary Logics

(1) X ⊆ B is a fixed point of F if F(X) = X.

(2) A least fixed point or a greatest fixed point of F is a fixed point X of F
such that X ⊆ Y or Y ⊆ X, respectively, for each fixed point Y of F.

(3) F is monotone, if X ⊆ Y =⇒ F(X) ⊆ F(Y) for all X, Y ⊆ B.

Theorem 4.3 (Knaster and Tarski). Every monotone operator F :
P(B) → P(B) has a least fixed point lfp(F) and a greatest fixed point
gfp(F). Further, these fixed points may be written as

lfp(F) =
⋂
{X : F(X) = X} =

⋂
{X : F(X) ⊆ X}

gfp(F) =
⋃
{X : F(X) = X} =

⋃
{X : F(X) ⊇ X}.

Proof. Let S = {X ⊆ B : F(X) ⊆ X} and Y =
⋂

S. We first show that Y
is a fixed point of F.

F(Y) ⊆ Y. Clearly, Y ⊆ X for all X ∈ S. As F is monotone, it follows
that F(Y) ⊆ F(X) ⊆ X. Hence F(Y) ⊆ ⋂

S = Y.

Y ⊆ F(Y). As F(Y) ⊆ Y, we have F(F(Y)) ⊆ F(Y), and hence F(Y) ∈ S.
Thus Y =

⋂
S ⊆ F(Y).

By definition, Y is contained in all X such that F(X) ⊆ X. In
particular Y is contained in all fixed points of F. Hence Y is the least
fixed point of F.

The argument for the greatest fixed point is analogous. q.e.d.

Least fixed points can also be constructed inductively. We call an
operator F : P(B) → P(B) inductive if the sequence of its stages Xα

(where α is an ordinal), defined by

X0 := ∅,

Xα+1 := F(Xα), and

Xλ :=
⋃

α<λ

Xα for limit ordinals λ,

is increasing, i.e. if Xβ ⊆ Xα for all β < α. Obviously, monotone
operators are inductive. The sequence of stages of an inductive operator
eventually reaches a fixed point, which we denote by X∞. The least
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4.2 Some Fixed-Point Theory

ordinal β for which Xβ = Xβ+1 = X∞ is called cl(F), the closure ordinal
of F.

Lemma 4.4. For every inductive operator F : P(B)→ P(B), |cl(F)| ≤
|B|.

Proof. Let |B|+ denote the smallest cardinal greater than |B|. Suppose
that the claim is false for F. Then for each α < |B|+ there exists an
element xα ∈ Xα+1 − Xα. The set {xα : α < |B|+} is a subset of B of
cardinality |B|+ > |B|, which is impossible. q.e.d.

Proposition 4.5. For monotone operators, the inductively constructed
fixed point coincides with the least fixed point, i.e. X∞ = lfp(F).

Proof. As X∞ is a fixed point, lfp(X) ⊆ X∞. For the converse, we show
by induction that Xα ⊆ lfp(F) for all α. As lfp(F) =

⋂{Z : F(Z) ⊆ Z},
it suffices to show that Xα is contained in all Z for which F(Z) ⊆ Z.

For α = 0, this is trivial. By monotonicity and the induction
hypothesis, we have Xα+1 = F(Xα) ⊆ F(Z) ⊆ Z. For limit ordinals λ

with Xα ⊆ Z for all α < λ we also have Xλ =
⋃

α<λ ⊆ Z. q.e.d.

The greatest fixed point can be constructed by a dual induction,
starting with Y0 = B, by setting Yα+1 := F(Yα) and Yλ =

⋂
α<λ Yα for

limit ordinals. The decreasing sequence of these stages then eventually
converges to the greatest fixed point Y∞ = gfp(F).

The least and greatest fixed points are dual to each other. For
every monotone operator F, the dual operator Fd : X 7→ F(X) (where X
denotes the complement of X) is also monotone, and we have that

lfp(F) = gfp(Fd) and gfp(F) = lfp(Fd).

Everything said so far holds for operators on arbitrary (finite or
infinite) power set lattices. In finite model theory, we consider opera-
tors F : P(Ak) → P(Ak) for finite A only. In this case the inductive
constructions will reach the least or greatest fixed point in a polyno-
mial number of steps. As a consequence, these fixed points can be
constructed efficiently.
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4 LFP and Infinitary Logics

Lemma 4.6. Let F : P(Ak) → P(Ak) be a monotone operator on a
finite set A. If F is computable in polynomial time (with respect to |A|),
then so are the fixed points lfp(F) and gfp(F).

4.3 Least Fixed-Point Logic

LFP is the logic obtained by adding least and greatest fixed points to
first-order logic.

Definition 4.7. Least fixed-point logic (LFP) is defined by adding to the
syntax of first-order logic the following least fixed-point formation rule: If
ψ(R, x) is a formula of vocabulary τ ∪ {R} with only positive occur-
rences of R, if x is a tuple of variables, and if t is a tuple of terms (such
that the lengths of x and t match the arity of R), then

[lfp Rx . ψ](t) and [gfp Rx . ψ](t)

are formulae of vocabulary τ. The free first-order variables of these
formulae are those in (free(ψ) \ {x : x in x}) ∪ free(t).

Semantics. For any τ-structure A providing interpretations for all free
variables in the formula, we have that A |= [lfp Rx . ψ](t) if tA (the
tuple of elements of A interpreting t) is contained in lfp(Fψ), where Fψ

is the update operator defined by ψ on A. The semantic for greatest
fixed point operators is defined analogously.

Example 4.8. Here is a fixed-point formula that defines the transitive
closure of the binary predicate E:

TC(u, v) := [lfp Txy . Exy ∨ ∃z(Exz ∧ Tzy)](u, v).

Note that in a formula [lfp Rx . ϕ](t), there may be free variables in
ϕ additional to those in x, and these remain free in the fixed-point
formula. They are often called parameters of the fixed-point formula.
For instance, the transitive closure can also be defined by the formula

ϕ(u, v) := [lfp Ty . Euy ∨ ∃x(Tx ∧ Exy)](v)

which has u as a parameter.
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4.3 Least Fixed-Point Logic

It can be shown that every LFP-formula is equivalent to one with-
out parameters (at the cost of increasing the arity of the fixed-point
variables). The proof is left to the reader.

Example 4.9. Let ϕ := ∀y(y < x → Ry) and let (A,<) be a partial
order. The formula [lfp Rx . ϕ](x) then defines the well-founded part
of <. The closure ordinal of Fϕ on (A,<) is the length of the longest
well-founded initial segment of <, and (A,<) |= ∀x[lfp Rx . ϕ](x) if,
and only if, (A,<) is well-founded.

Example 4.10. The LFP-sentence

ψ := ∀y∃zFyz ∧ ∀y[lfp Ry . ∀x(Fxy→ Rx)](y)

is an infinity axiom, i.e. it is satisfiable but does not have a finite model.

Example 4.11. The Game query asks, given a finite game G =

(V, V0, V1, E), to compute the set of winning positions for Player 0.
The Game query is LFP-definable, by use of [lfp Wx . ϕ](x) with

ϕ(W, x) := (V0x ∧ ∃y(Exy ∧Wy)) ∨ (V1 ∧ ∀y(Exy→Wy)).

The Game query plays an important role for LFP. It can be shown that
every LFP-definable property of finite structures can be reduced to
Game by a quantifier-free interpretation. Hence Game is complete for
LFP via this notion of reduction, and thus a natural candidate if one is
trying to separate a weaker logic from LFP.

Example 4.12. Maximal bisimulation B on a Kripke structure K =

(K, {Ej}, {Pj}) is defined by the formula ψ(u, v) =

[
gfp Bxy.

(∧

i

(
Pix ↔ Piy

)
∧

∧

j

(
∀x′(Ej(x, x′)→ ∃y′(Ej(y, y′) ∧ B(x′, y′)))∧

∀y′(Ej(y, y′)→ ∃x′(Ej(x, x′) ∧ B(x′, y′)))
))]

(u, v) ,

i.e. uK and vK are bisimilar if and only if K, uK , vK |= ψ(u, v).

65



4 LFP and Infinitary Logics

The duality between the least and greatest fixed points implies that
for any formula ψ,

[gfp Rx . ψ](t) ≡ ¬[lfp Rx . ¬ψ[R/¬R]](t),

where ψ[R/¬R] is the formula obtained from ψ by replacing all occur-
rences of R-atoms by their negations. (As R occurs only positively in ψ,
the same is true for ¬ψ[R/¬R].) Because of this duality, greatest fixed
points are often omitted in the definition of LFP. On the other hand, it is
sometimes convenient to keep the greatest fixed points, and to use the
duality (and de Morgan’s laws) to translate LFP-formulae to negation
normal form, i.e. to push negations all the way to the atoms.

4.3.1 Capturing Polynomial Time

From the fact that first-order operations are polynomial-time com-
putable and from Lemma 4.6, we can conclude that every LFP-definable
property of finite structures is computable in polynomial time.

Proposition 4.13. Let ψ be a sentence in LFP. It is decidable in polyno-
mial time whether a given finite structure A is a model of ψ. In short,
LFP ⊆ PTIME.

Obviously LFP, is a fragment of second-order logic. Indeed, by the
Knaster-Tarski Theorem,

[lfp Rx . ψ(R, x)](y) ≡ ∀R((∀x(ψ(R, x)→ Rx))→ Ry).

We next relate LFP to SO-HORN.

Theorem 4.14. Every formula ψ ∈ SO-HORN is equivalent to some
formula ψ∗ ∈ LFP.

Proof. By Theorem 3.9, we can assume that ψ = (∃R1) · · · (∃Rm)ϕ ∈
Σ1

1-HORN. By combining the predicates R1, . . . , Rm into a single predi-
cate R of larger arity and by renaming variables, it is easy to transform
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4.4 Infinitary First-Order Logic

ψ into an equivalent formula

ψ′ := ∃R∀x∀y
∧

i
Ci ∧

∧

j
Dj,

where the Ci are clauses of the form Rx ← αi(R, x, y) (with exactly
the same head Rx for every i) and the Dj are clauses of the form
0← β j(R, x, y). The clauses Ci define, on every structure A, a monotone
operator F : R 7→ {x :

∨
i ∃yαi(x, y)}. Let Rω be the least fixed point

of this operator. Obviously A |= ¬ψ if and only if A |= βi(Rω , a, b)
for some i and some tuple a, b. But Rω is defined by the fixed-point
formula

αω(x) := [lfp Rx .
∨

i
∃yαi(x, y)](x).

Hence, for β := ∃x∃y
∨

j β j(x, y), ψ is equivalent to the formula ψ∗ :=
¬β[Rz/αω(z)] obtained from ¬β by substituting all occurrences of
atoms Rz by αω(z). Clearly, this formula is in LFP. q.e.d.

Hence SO-HORN ≤ LFP ≤ SO. As an immediate consequence of
Theorems 3.12 and 4.14 we obtain the Immerman–Vardi Theorem.

Theorem 4.15 (Immerman and Vardi). On ordered structures, least
fixed-point logic captures polynomial time.

However, on unordered structures, SO-HORN is strictly weaker
than LFP.

4.4 Infinitary First-Order Logic

Definition 4.16. Let κ ∈ Cn∞ be an infinite cardinal number and τ a
signature. The infinitary logic Lκω(τ) is inductively defined as follows.

• Each atomic formula in FO(τ) is in Lκω(τ).
• If ϕ ∈ Lκω(τ), then also ¬ϕ, ∃xϕ, ∀xϕ ∈ Lκω(τ).
• If Φ ⊆ Lκω(τ) is a set of formulae with |Φ| < κ,

then
∨

Φ,
∧

Φ ∈ Lκω(τ).

Further, we write L∞ω(τ) for
⋃

κ∈Cn∞ Lκω(τ).
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4 LFP and Infinitary Logics

Note that the second parameter ω is always fixed as an index of our
logics. This indicates that we only allow finite sequences of quantifiers.

The logic Lωω(τ) is precisely the logic FO(τ). The logic Lℵ1ω(τ),
in which disjunctions and conjunctions can be built over countable sets
of formulae, is denoted by Lω1ω .

The semantics of the infinitary logic is defined in an obvious way.
Clearly, we only have to treat the cases of

∧
Φ and

∨
Φ. Let a ⊆ A be

an assignment of at most κ free variables, then

• A, a |= ∧
Φ if and only if A, a |= ϕ for all ϕ ∈ Φ.

• A, a |= ∨
Φ if and only if there exists a ϕ ∈ Φ such that A, a |= ϕ.

In all other cases the semantics of infinitary logic coincides with that of
first-order logic.

Example 4.17. Finiteness can be expressed in Lω1ω . Let

ϕ≥n := ∃x1 . . . ∃xn
∧

1≤i<j≤n
(xi ̸= xj)

and ϕfin :=
∨{¬ϕ≥n | n < ω} ∈ Lω1ω . Then for each structure A,

A |= ϕfin if and only if A is finite.

Remark 4.18. The Compactness Theorem does not hold for the logic
Lω1ω . Consider for example the set of formulas ϕfin ∪ {ϕ≥n | n < ω}.
It is unsatisfiable, but each of its finite subsets is satisfiable.

Theorem 4.19. Let κ ∈ Cn∞. For each formula ϕ(x) ∈ LFP there is a
formula ϕ̂ ∈ Lκω such that for all structures A with |A| < κ and all
a ⊆ A, we have A |= ϕ(a) if and only if A |= ϕ̂(a).

Proof. By using the duality between least and greatest fixed points we
may assume that formulas in LFP only contain operators expressing
least fixed points. We inductively define the translation from LFP to
formulas of L∞ω as follows:

• for atomic formulas ψ we set ψ̂ = ψ,

• ¬̂ψ = ¬ψ̂,

• ψ̂1 ∧ ψ2 = ψ̂1 ∧ ψ̂2, and ψ̂1 ∨ ψ2 = ψ̂1 ∨ ψ̂2.
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4.4 Infinitary First-Order Logic

For the case of ̂[lfp Rx.ψ](t), we build by transfinite induction a sequence
of formulas ψα(x) for all ordinals α ≤ κ. These formulas intuitively
correspond to the stages in the inductive evaluation of the least fixed-
point. Accordingly, we start with the empty relation and set ψ0(x) = ⊥.
The induction proceeds as follows:

• ψα+1(x) = ψ̂[Rz/ψα(z)],

• for α =
⋃

β<α β, let ψα(x) =
∨

β<α{ψβ(x) | β < α}.

Using induction on α and the definition of the semantics of L∞ω , we
see that the formulas ψα correspond exactly to the stages of fixed-point
induction, i.e. Rα = {x | ψα(x)}.

On structures A with |A| < κ we have Rκ = R∞ is the least fixed-
point and which is thus defined by ψκ(x). The claim follows. q.e.d.

In general we can not drop the condition of bounded cardinality of
the structures. In fact, the class of all well-orderings is definable in LFP
by the following sentence:

ψwo := ϕlin ∧ ∀x[lfp Wx(∀y(y < x →Wy))](x),

where ϕlin is a formula that expresses that < is a linear order. One can
show that this class is not definable in L∞ω .

We also observe that the structure (ω, 0, S) is axiomatizable in
LFP(0, S) up to isomorphism. To see this, note that {Sn(0) | n < ω} is
the least fixed-point of the expression x = 0 ∨ ∃y(Ry ∧ Sy = x) (with
respect to the variable R). Thus, (ω, 0, S) can be axiomatized by

∀x∀y(Sx = Sy→ x = y) ∧ (∀xSx ̸= 0)∧
∀x[lfp Rx(x = 0∨ ∃y(Ry ∧ Sy = x))](x).

(The two first formulae in the conjunction are the first Peano axioms.)
We conclude that the upward Löwenheim-Skolem theorem for LFP fails:

Remark 4.20. There exists a sentence ϕ ∈ LFP that has an infinite model
and no uncountable model.

Next, we want to show that the Compactness Theorem does not
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4 LFP and Infinitary Logics

hold for LFP either. For this we give an LFP(S)-sentence ϕ such that ϕ

has arbitrary large finite models, but no infinite one.

Theorem 4.21. There is a sentence ϕ ∈ LFP(S) where S is a function
symbol of arity one such that ϕ has arbitrary large finite models, but
no infinite one.

Proof. Define

ψ(x, z) := [lfp Rx.(x = z ∨ ∃y(Ry ∧ Sy = x))](x).

If A is an S-structure then for all elements a, b ∈ A, we have A |= ψ(b, a)
if and only if there is some n < ω such that (SA)n(a) = b. Now let

ϕ := ∀x∃y(Sy = x) ∧ ∃x∀yψ(y, x).

For some S-structure A, we have A |= ϕ if and only if SA is surjec-
tive and there is an a ∈ A that generates the whole structure in the
sense that A = {(SA)n(a) | n < ω}. For any n < ω, the structure
A = ({1, . . . , n}, SA) where SA(k) = k + 1 for k ∈ {1, . . . , n− 1} and
SA(n) = 1 is a model of ϕ. Thus, ϕ has arbitrary large finite models.

On the other hand, ϕ has no infinite model. Let A = (A, SA) be an
S-structure with an infinite universe A such that there is an a ∈ A with
A = {(SA)n(a) | n < ω}, then a /∈ Img(SA), so SA is not surjective.
Indeed, assume that a ∈ Img(SA). Then a = SA(b) for some b ∈ A.
Because A = {(SA)n(a) | n < ω}, it would follow b = (SA)n(a), so
(SA)n+1(a) = a. Then it would be |{(SA)n(a) | n < ω}| ≤ n, in
contradiction to the fact that A is infinite and A = {(SA)n(a) | n < ω}.
It follows that A ̸|= ϕ, and the statement is proven. q.e.d.

Corollary 4.22. There exists an unsatisfiable set of sentences Φ ⊆ LFP
such that every finite subset of Φ is satisfiable, i.e. the Compactness
Theorem fails for LFP.

Proof. According to Theorem 4.21 there is a sentence ϕ ∈ LFP(S) that
has arbitrary large finite models, but no infinite one. As before, consider
the set of sentences Φ = {ϕ} ∪ {∃x1 . . . ∃xn

∧
i<j xi ̸= xj : n ∈ ω}.

q.e.d.
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4.4 Infinitary First-Order Logic

We mention yet another property of LFP, that we do not prove
here: the downward Löwenheim-Skolem theorem holds for LFP.

Theorem 4.23. Let ϕ ∈ LFP be a satisfiable sentence. Then ϕ has a
countable model.

In particular, it follows that there is a sentence in ϕ ∈ L∞ω(τ) for
some appropriate signature τ that is not equivalent to any sentence
ψ ∈ LFP(τ). For example, we can choose an uncountable set of constant
symbols as τ and a conjunction of all sentences c ̸= d for pairwise
distinct c, d ∈ τ as ϕ, which has no countable model.
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