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2 Finite Model Property

We study the finite model property for fragments of FO as a mean to
show that these fragments are decidable, and also to better understand
their expressive power and algorithmic complexity.

Recall that a class X ⊆ FO has the finite model property if Sat(X) =

Fin-sat(X). Since for any decidable class X, Fin-sat(X) is r.e. and Sat(X)

is co-r.e., it follows that Sat(X) is decidable if X has the FMP. In many
cases, the proof that a class has the finite model property provides a
bound on the model’s cardinality, and thus a complexity bound for the
satisfiability problem. To prove completeness for complexity classes we
make use of a bounded variant of the domino problem.

2.1 Ehrenfeucht-Fraïssé Games

2.1.1 Atomic Types

Definition 2.1. The atomic k-type of a1, . . . , ak in A is defined as

atpA(a1, . . . , ak) := {γ(x1 . . . , xk) : γ atomic formula or negated

atomic formula such that A |= γ(a1, . . . , ak)}.

We assume that all structures contain unary or binary relations only.
Hence, to describe a structure it suffices to define its universe and to
specify the atomic 1-types and 2-types for all of its elements.

Example 2.2. Let A be the structure (A, E1, . . . , Em) where the Ei are
binary relations. Then for a ∈ A:

atpA(a) = {Eixx : A |= Eiaa} ∪ {¬Eixx : A |= ¬Eiaa}.

Definition 2.3. Let A and B be structures over the same signature and

27



2 Finite Model Property

a ⊆ A and b ⊆ B. We say that A, a is locally isomorphic to B, b and
write A, a ≡0 B, b if a has the same atomic type in A as b in B.

2.1.2 The Game EFm(A,B)

The Ehrenfeucht-Fraïssé game EFm(A,B) is played by two players
according to the following rules.

The arena consists of the structures A and B. We assume that
A ∩ B = ∅. The players are called Spoiler and Duplicator, and a play of
EFm(A,B) consists of m moves.

In the i-th move, Spoiler chooses either an element ai ∈ A or an
element bi ∈ B. Duplicator answers by choosing an element in the other
structure.

After m moves, elements a1, . . . , am from A and b1, . . . , bm from
B are chosen. Duplicator wins the play if A, (a1, a2, . . . , am) ≡0

B, (b1, b2, . . . , bm). Otherwise Spoiler wins.
After i moves in EFm(A,B) are made, a position (a1, . . . , ai, b1, . . . , bi)

is reached. We denote the remaining subgame in which m− i moves
are left by EFm−i(A, a1, . . . , ai,B, b1, . . . , bi).

A winning strategy of Spoiler for such a subgame is a function
which, for every reachable position, determines a move such that Spoiler
wins each play which is consistent with this strategy, no matter how
Duplicator plays. Winning strategies for Duplicator are defined analo-
gously.

We say that Spoiler (respectively, Duplicator) wins the game EFm(A,B)

if this player has a winning strategy for EFm(A,B). By induction on
the number of moves it is easy to show that for every (sub)game exactly
one of the two players has a winning strategy.

Example 2.4.

• Let A = (Z,<), B = (R,<). Then Duplicator wins EF2(A,B), but
Spoiler wins EF3(A,B).

• For a relational signature τ = {E, P} (where P has arity one and
E has arity two), consider the structures A and B in Figure 2.1.
Spoiler wins the game EF3(A,B), but Duplicator wins EF2(A,B).
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A:

P P P

P B:

P P

P

Figure 2.1. Two structuresA and B with A ≡2 B and A ̸≡3 B

2.1.3 The Game EF(A,B)

An important variant is the Ehrenfeucht-Fraïssé game EF(A,B) in
which plays of arbitrary length are possible. In each play, Spoiler first
chooses an m ∈N, and then the players play the game EFm(A,B).

Spoiler wins the game EF(A,B) if and only if there exists an m ∈N

such that he wins the game EFm(A,B). In other words: Duplicator
wins EF(A,B) if and only if she has a winning strategy for each of the
games EFm(A,B).

Recall that two structures A and B are said to be elementarily m-
equivalent, written A ≡m B, if no first-order formula of quantifier rank at
most m can separate both structures. If A ≡m B for all m ∈N we write
A ≡ B and say that A and B are elementarily equivalent. The following
theorem shows that elementary equivalence and Ehrenfeucht-Fraïssé
games are in some sense equivalent concepts.

Theorem 2.5 (Ehrenfeucht, Fraïssé). Let τ be finite and relational, and
let A,B be τ-structures.

(1) The following statements are equivalent:

(i) A ≡ B.
(ii) Duplicator wins the Ehrenfeucht-Fraïssé game EF(A,B).

(2) For all m ∈N the following statements are equivalent:

(i) A ≡m B.
(ii) Duplicator wins EFm(A,B).

In fact, even the following, somewhat stronger proposition holds
(for a proof see the lecture notes of mathematical logic).
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2 Finite Model Property

Theorem 2.6. Let A,B be τ-structures, ā = a1, . . . , ar ∈ A, b̄ =

b1, . . . , br ∈ B. If there exists a formula ψ(x̄) with qr(ψ) = m such
that A |= ψ(ā) and B |= ¬ψ(b̄) holds, then Spoiler has a winning
strategy for the game Gm(A, ā,B, b̄).

We use the above to prove finite model property of the following
fragment of FO.

Theorem 2.7. If τ contains only unary predicates then FO[τ] has FMP.

Proof. Let A = (A, P1, . . . , Pn) and let qr(ϕ) = m. For each sequence of
bits α = α1 . . . αn we define Pα = Q1 ∩Q2 ∩ . . . ∩Qn, where Qi = Pi if
αi = 1 and Qi is the complement of Pi else.

Note that {α | x ∈ Pα} determines all atomic types of x. We
construct B by taking min(|Pα|, m) elements into each PB

α . Observe
that B is defined in this way (take PB

i =
⋃

α|αi=1 PB
α ). We show that

A ≡m B using the Ehrenfeucht-Fraïssé Theorem.

The following is a winning strategy for Duplicator in EF(A,B):
Answer each Spoiler’s choice of an element with an element of the same
atomic type in the other structure. Due to the construction it is possible
to do that for m moves. It also follows from the construction that ≡0 is
never violated and Duplicator wins the game. q.e.d.

You can see from the proof that the constructed finite model B is a
sub-model of A. It is not always the case, sometimes it is not possible
to find a finite sub-model, even for fragments with FMP.

2.2 FMP of Modal Logic

We proceed with proving that propositional modal logic (ML), which
is an important fragment of FO2, has the finite model property. In
fact we establish an even stronger result showing that every satisfiable
ML-formula has a finite model that is a tree. Hence, we prove that ML
has the finite tree model property.

30

2.2 FMP of Modal Logic

2.2.1 Modal Logic

Let us first briefly review the syntax and semantics of propositional
modal logic (ML).

Definition 2.8. For a given set of actions A and atomic properties
{Pi : i ∈ I}, the syntax of ML is inductively defined as:

• All propositional logic formulae with propositional variables Pi are
in ML.

• If ψ, ϕ ∈ ML, then also ¬ψ, (ψ ∧ ϕ) and (ψ ∨ ϕ) ∈ ML.
• If ψ ∈ ML and a ∈ A, then ⟨a⟩ψ and [a]ψ ∈ ML.

Remark 2.9. If there is only one action a ∈ A, we write ♦ψ and �ψ

instead of ⟨a⟩ψ and [a]ψ, respectively.

Definition 2.10. A transition system or Kripke structure with actions from
a set A and atomic properties {Pi : i ∈ I} is a structure

K = (V, (Ea)a∈A, (Pi)i∈I)

with a universe V of states, binary relations Ea ⊆ V × V describing
transitions between the states, and unary relations Pi ⊆ V describing
the atomic properties of states.

A transition system can be seen as a labelled graph where the
nodes are the states of K, the unary relations are labels of the states,
and the binary transition relations are the labelled edges.

Definition 2.11. Let K = (V, (Ea)a∈A, (Pi)i∈I) be a transition system,
ψ ∈ ML a formula and v a state of K. The model relationship K, v |= ψ,
i.e. ψ holds at state v of K, is inductively defined:

• K, v |= Pi if and only if v ∈ Pi.
• K, v |= ¬ψ if and only if K, v ̸|= ψ.
• K, v |= ψ ∨ ϕ if and only if K, v |= ψ or K, v |= ϕ.
• K, v |= ψ ∧ ϕ if and only if K, v |= ψ and K, v |= ϕ.
• K, v |= ⟨a⟩ψ if and only if there exists w such that (v, w) ∈ Ea and
K, w |= ψ.

• K, v |= [a]ψ if and only if K, w |= ψ holds for all w with (v, w) ∈ Ea.
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2 Finite Model Property

Definition 2.12. For a transition system K and a formula ψ we define
the extension

JψKK := {v : K, v |= ψ}

as the set of states of K where ψ holds.

2.2.2 Bisimulation

One of the most important notions in the analysis of modal logics is
bisimulation. In fact bisimulation is closely related to logical equivalence
of Kripke structures with respect to formulae from ML.

Definition 2.13. LetK = (V, (Ea)a∈A, (Pi)i∈I) andK′ = (V′, (E′a)a∈A, (P′i )i∈I)

be transition systems. A bisimulation between K and K′ is a relation
Z ⊆ V ×V′ such that for all (v, v′) ∈ Z
(Pred) v ∈ Pi if and only if v′ ∈ P′i for all i ∈ I,
(Forth) for all a ∈ A, w ∈ V with v a−→ w there exists a w′ ∈ V′ with

v′ a−→ w′ and it is (w, w′) ∈ Z,
(Back) for all a ∈ A, w′ ∈ V′ with v′ a−→ w′ there exists a w ∈ V with

v a−→ w and it is (w, w′) ∈ Z.

Example 2.14.

r
r

r�
�

�✠

❅
❅
❅❘w1 w2

v

Q Q

P r r r✲ ✲u′ v′ w′

P Q

Z = {(v, v′), (w1, w′), (w2, w′)} is a bisimulation.

Definition 2.15. Let K,K′ be Kripke structures and let u ∈ V, u′ ∈ V′.
(K, u) and (K′, u′) are bisimilar (for short, K, u ∼ K′, u′), if there exists
a bisimulation Z between K and K′ such that (u, u′) ∈ Z.

2.2.3 Bisimulation Invariance of Formulae of Modal Logic

The fundamental importance of bisimulation origins in the fact that
formulae of modal logic are not able to distinguish between bisimilar
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states. A more refined analysis considers the modal depth of formulae,
i.e. the maximal depth of nesting of modal operators in a formula.

Definition 2.16. The modal depth of a formula ψ ∈ ML is defined induc-
tively by

(1) md(ψ) = 0 for propositional formulae ψ,
(2) md(¬ψ) = md(ψ),
(3) md(ψ ◦ ϕ) = max(md(ψ), md(ϕ)) for ◦ ∈ {∧,∨,→},
(4) md(⟨a⟩ψ) = md([a]ψ) = md(ψ) + 1.

Definition 2.17. Let K and K′ be two Kripke structures and let v ∈
K, v′ ∈ K′.
(1) K, v ≡ML K′, v′ if for all ψ ∈ ML we have K, v |= ψ if and only if
K′, v′ |= ψ.

(2) K, v ≡n
ML K′, v′ if for all ψ ∈ ML with md(ψ) ≤ n we have K, v |=

ψ if and only if K′, v′ |= ψ.

One can refine the definition of the bisimilarity relation between
transition systems as well. We say that (K, u) and (K′, u′) are n-bisimilar
(for short, K, u ∼n K′, u′), if there exists a relation Z between K and K′
such that (u, u′) ∈ Z and Z has the property ’Pred’ and the ’Forth’ and
’Back’ property for all pairs of nodes (v, v′) ∈ Z with distance at most n
from (u, u′). For a formal (game theoretical) definition, see the lectures
notes of mathematical logic.

Theorem 2.18. For Kripke structures K, K′ and u ∈ K, u′ ∈ K′ the
following holds:

(1) K, u ∼ K′, u′ ⇒ K, u ≡ML K′, u′.
(2) K, u ∼n K′, u′ ⇒ K, u ≡n

ML K′, u′.

Statement (1) is called the bisimulation invariance of modal logic:

If K, v |= ψ and K, v ∼ K′, v′, then K′, v′ |= ψ.

The reverse only holds for finitely branching systems. A transition
system is finitely branching if for all states v and all actions a the set
vEa := {w : (v, w) ∈ Ea} of a-successors of v is finite. (for proofs see
the lecture notes of mathematical logic).
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2 Finite Model Property

Theorem 2.19. Let K,K′ be finitely branching transitions systems. Then

K, u′ ∼ K′, u′ if and only if K, u ≡ML K′, u′.

2.2.4 Tree Model Property

Definition 2.20. A transition system K = (V, (Ea)a∈A, (Pi)i∈I) with a
marked node w is a tree if

(1) Ea ∩ Eb = ∅ for all actions a ̸= b,
(2) (V, E) is a (directed) tree with root w in the graph theoretical sense,

where E =
⋃

a∈A Ea.

Definition 2.21. Let Φ be a set of formulae (of some logic, e.g. of modal
logic or first-order logic) over a signature which contains at most binary
relations and no functions.

(1) Φ has the finite model property (FMP) if every satisfiable formula
ϕ ∈ Φ has a finite model.

(2) Φ has the tree model property (TMP) if every satisfiable formula in
Φ has a tree as a model.

(3) Φ has finite tree model property if every satisfiable formula in Φ has
a finite tree as a model.

We shall prove that formulae of modal logic have the finite tree
model property. For that consider unfoldings of transition systems. The
unfolding of K from state v consists of all paths in K that start with
v. Hereby every path is considered as a distinguished object, i.e. even
if two paths intersect, the unfolding T contains several copies of the
intersection points and each state from K that is reachable from v via
a path is added to the unfolding, no matter whether is has already
been reached. Self-loops in K correspond thus to infinite paths in the
unfolding. Formally, unfoldings are defined as follows.

Definition 2.22. Let K = (VK , (EKa )a∈A, (PKi )i∈I) be a Kripke structure
and let v ∈ VK. The unfolding of K from v is the Kripke structure
TK,v = (VT , (ETa )a∈A, (PTi )i∈I) with

VT = {v̄ = v0a0v1a1v2 . . . vm−1am−1vm : m ∈N,
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v0 = v, vi ∈ VK , ai ∈ A, (vi, vi+1) ∈ EKai
for all i < m}

ETa = {(v̄, w̄) ∈ VT ×VT : w̄ = v̄aw for some w ∈ VK , a ∈ A}
PTi = {v̄ = v0a0 . . . vm ∈ VT : vm ∈ PKi }.

We write End(v̄) for the last state on the path v̄, so we have v̄ ∈ PTi
if and only if End(v̄) ∈ PKi .

Lemma 2.23. For all Kripke structures K and all states v in K we have
K, v ∼ TK,v, v.

Proof. Z := {(w, w̄) ∈ VK ×VT : End(w̄) = w} is a bisimulation from
K to TK,v with (v, v) ∈ Z. q.e.d.

Theorem 2.24. ML has the tree model property.

Proof. Let ψ be an arbitrary satisfiable formula from ML. Then there is a
model K, v |= ψ. Let T := TK,v be he unfolding of K, v. As K, v ∼ T , v,
due to the bisimulation invariance of modal logic we have T , v |= ψ.
Thus ψ has a tree model. q.e.d.

The same argument shows that every class of bisimulation invariant
formulae has the tree model property.

2.2.5 Finite Model Property

For ML, we can prove a stronger result. For this, we use the notion of
the closure C(ψ) of a formula ψ.

Definition 2.25. For every formula ψ ∈ ML we inductively define for
all n ∈N the sets of formulae Cn(ψ) as follows:

(1) ψ ∈ C0(ψ).
(2) If ¬ϕ ∈ Cn(ψ) then also ϕ ∈ Cn(ψ).
(3) If (ϕ ∧ ϑ) ∈ Cn(ψ) or (ϕ ∨ ϑ) ∈ Cn(ψ) then also ϕ ∈ Cn(ψ) and

ϑ ∈ Cn(ψ).
(4) If ⟨a⟩ϕ ∈ Cn(ψ) or [a]ϕ ∈ Cn(ψ) then ϕ ∈ Cn+1(ψ).

Finally let C(ψ) :=
⋃

n∈N Cj(ψ).
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2 Finite Model Property

The closure C(ψ) contains those formulae from ML that are sub-
stantial for the evaluation of ψ; Cj(ψ) are hereby formulae that appear in
ψ within j nested modal operators. Notice that |C(ψ)| ≤ 2|ψ| (negated
formulas are added) and that Cn(ψ) = ∅ for all n > md(ψ).

Theorem 2.26. For every satisfiable formula ψ ∈ ML there is a finite
tree structure T , v of depth ≤ md(ψ) and branching factor ≤ |C(ψ)|
such that T , v |= ψ. Thus ML has finite tree model property.

Proof. Without loss of generality we can assume that ψ is in negation
normal form. As ψ is satisfiable, there exists a tree model T , u |= ψ.
The depth of a node of T is its distance from the root. We define now a
labelling function S which assigns a subset of Cm(ψ) to every node v of
T of depth m, namely

S(v) := {ϕ ∈ Cm(ψ) : T , v |= ϕ}.

We transform T in a finite tree structure by successively deleting
unnecessary subtrees. Let T ′ ⊆ T be some subtree of T and let v be a
node of T ′. Notice that T , v |= S(v). The following lemma provides a
sufficient condition for T ′, v |= S(v).

Lemma 2.27. Let the subtree T ′ ⊆ T be constructed in a way that the
following conditions are fulfilled.

(1) For every successor w of v in T ′ we have T ′, w |= S(w).

(2) For every formula of the form ⟨a⟩ϕ ∈ S(v) there exists an a-
successor w⟨a⟩ϕ of v in the tree T ′ such that T ′, w⟨a⟩ϕ |= ϕ.

Then it is T ′, v |= S(v).

Proof. Each formula in S(v) is a combination of formulae of the form
Pi,¬Pi, ⟨a⟩ϕ and [a]ϕ that are built with ∧ and ∨. So it suffices to show
for every formula ϑ of this form that T , v |= ϑ implies T ′, v |= ϑ. For
ϑ = Pi and ϑ = ¬Pi this is clear as the atomic properties of the node v
are the same in T and T ′. For formulae [a]ϕ this follows from condition
(1) and for formulae ⟨a⟩ϕ from condition (2). q.e.d.
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Now we can construct a finite subtree T ′ as follows. First, let v be
the root of T . For every formula of the form ⟨a⟩ϕ ∈ S(v) we choose
an a-successor w⟨a⟩ϕ ∈ vEa such that T , w⟨a⟩ϕ |= ϕ holds and delete all
not chosen successor nodes of v and the trees that have those nodes
as roots from T . We continue this process for all remaining nodes of
depth 1, 2, . . .. As the labelling S(v) of nodes of depth m = md(ψ) only
consists of formulae Pi and ¬Pi, the resulting tree has depth at most
m. Every node v has at most |S(v)| ≤ C(ψ) successors such that the
branching factor of T ′ is bounded by |C(ψ)|.

It follows by inductively proceeding from leaves to the root of T ′
that T ′, v |= S(v), in particular, T ′, v |= ψ. q.e.d.

2.3 Finite Model Property of FO2

We denote relational first-order logic over k variables by FOk, i.e.

FOk := {ϕ ∈ FO : ϕ relational, ϕ only contains k variables}.

One result of the previous chapter was that [∀∃∀, all, (0)] ⊆ FO3 is a
conservative reduction class. We now prove that FO2 has the finite
model property and is thus decidable. Note that FOk formulae are not
necessarily in prenex normal form. A further motivation for the study
of FO2 is that propositional modal logic can be viewed as a fragment of
FO2 (in fact ML can be proven to be precisely the bisimulation invariant
fragment of FO2).

Before we proceed to prove the finite model property for FO2, as a
first step we establish a normal form for formulae in FO2.

Lemma 2.28 (Scott). For each sentence ψ ∈ FO2 one can construct in
polynomial time a sentence ϕ ∈ FO2 of the form

ϕ := ∀x∀yα ∧
n∧

i=1
∀x∃yβi

such that α, β1, . . . , βn are quantifier free and such that ψ and ϕ are
satisfiable over the same universe. Moreover, we have |ϕ| = O(|ψ| ·
log |ψ|).
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2 Finite Model Property

Proof. First of all, we can assume that formulae ϕ ∈ FO2 only contain
unary and binary relation symbols. This is no restriction since relations
of higher arity can be substituted by introducing new binary and unary
relation symbols. For example, if R is a relation of arity three, one could
add a unary relation Rx and three binary relations Rx,x,y, Rx,y,x and
Rx,y,y and replace each atom R(x, x, x) (or R(y, y, y)) by Rx(x) (or Rx(y))
and atoms as R(x, x, y) or R(x, y, x) by Rx,x,y(x, y) and Rx,y,x(x, y) re-
spectively. By adding appropriate new subformulae one can ensure that
the semantics are preserved, i.e. that the newly introduced relations
partition a ternary relation in the intended sense. For example we
would introduce as a new subformula ∀x(Rx(x)↔ Rx,x,y(x, x)).

With ψ containing at most binary relations, we iterate the following
steps until ψ has the desired form. We choose a subformula Qyη of ψ

(Q ∈ {∀, ∃}, η quantifier free) and add a new unary relation R:

ψ′ := ψ[Qyη/Rx]

ψ 7→ ψ′ ∧ ∀x(Rx ↔ Qyη).

R captures those x that satisfy Qyη. The resulting formula ϕ is not yet
of the desired form, but it is equivalent to the following:

(a) if Q = ∃, then

ϕ ≡ ψ′ ∧ ∀x∀y(η → Rx) ∧ ∀x∃y(Rx → η)

(b) else if Q = ∀, then

ϕ ≡ ψ′ ∧ ∀x∀y(Rx → η) ∧ ∀x∃y(η → Rx)

Now use that conjunctions of ∀∀-formulae are equivalent to a ∀∀-

formula and obtain ψ ≡ ∀x∀yα ∧
n∧

i=1
∀x∃yβi. q.e.d.

Theorem 2.29. FO2 has the finite model property. In fact, every satisfi-
able formula ψ ∈ FO2 has a model with at most 2|ψ| elements.

Proof. The proof strategy is as follows: we start with a model A of ψ and
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proceed by constructing a new model B of ψ such that |B| ≤ 2O(|ψ|).
For the construction the following definitions will be essential.

An element a ∈ A is said to be a king of A if its atomic 1-type is
unique in A, i.e. if atpA(b) ̸= atpA(a) for all b ̸= a. We let

• K := {a ∈ A : a is a king of A} be the set of kings of A, and
• P := {atpA(a) : a ∈ A, a /∈ K} be the set of atomic 1-types which

are realized at least twice in A.

Since A |= ∀x∃yβi for i = 1, . . . , n, there exist (Skolem) functions
f1, . . . , fn : A → A such that A |= βi(a, fia) for all a ∈ A. The court of
A is defined as

C := K ∪ { fik : k ∈ K, i = 1, . . . , n}.

Let C be the substructure of A induced by C. We construct a model
B |= ψ with universe B = C ∪ (P× {1, . . . , n} × {0, 1, 2}).

A

C
K

B

C
K

P

P

P

To specify B we set B|C = C and for all other elements we spec-
ify the 1- and 2-types (in this way fixing B on the remaining part).
However,

(1) This must be done consistently:

• atpA(b, b′) and atpA(b, b′′) must agree on atpA(b), and
• γ(x, y) ∈ atpB(b, b′)⇔ γ(y, x) ∈ atpB(b′, b).

(2) Of course we have to ensure that B |= ψ.

39



2 Finite Model Property

We illustrate the construction with the following example.

Example 2.30. Consider the formula ψ over the signature τ = {R, B}
(red edges and blue edges).

ψ = ∃x(Rxx ∧ Bxx)

∧ ∀x∀y((Rxx ∧ Bxx ∧ Ryy ∧ Byy→ x = y)

∧(Rxx ∨ Bxx)

∧(Rxy ∧ Ryx → x = y)

∧(Bxy ∧ Byx → x = y)

∧(Bxy ∧ x ̸= y→ Ryy))

∧ ∀x∃y(x ̸= y ∧ (Rxx → Rxy)

∧ (Bxx → Bxy)).

Let A |= ψ, then A looks like follows:

• • • • · · ·

K C

In this case P = {{Rxx,¬Bxx}, {¬Rxx, Bxx}} and the universe of
B is B = C ∪ (P× {1} × {0, 1, 2}).

We proceed to construct B by specifying the 1-types and 2-types
of its elements as follows.

(1) The atomic 1-types of elements (p, i, j) are set to atpB((p, i, j)) = p.
(2) The atomic 2-types atpB(b, b′) will be set so that B |= ∀x∃yβi for

i = 1, . . . , m.
Choose for each p ∈ P an element h(p) ∈ A with atpA(h(p)) = p.
Find for each b ∈ B and each i a suitable element b′ such that
B |= βi(b, b′) (by defining atpB(b, b′) appropriately).

(a) If b is a king, set b′ := fi(b) ∈ C ⊆ B. Then B |= βi(b, b′).
(b) If b ∈ C \ K (non-royal member of the court), distinguish:

• If fi(b) ∈ K, then set b′ := fi(b) ∈ K ⊆ B.
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• Otherwise it holds that atpA( fi(b)) = p ∈ P.
In this case, set b′ := (p, i, 0). Now set atpB(b, b′) :=
atpA(b, fi(b)). Thus B |= βi(b, b′) since A |= βi(b, fi(b)).

(c) If b = (p, j, ℓ) for some p ∈ P, j ∈ {1, . . . , n}, ℓ ∈ {0, 1, 2}, let
a := h(p) and consider fi(a).
If fi(a) ∈ K, set b′ = fi(a) and atpB(b, b′) := atpA(a, b′).
If fi(a) /∈ K, then atpA( fi(a)) = p′ ∈ P.
Set b′ := (p′, i, (ℓ+ 1) (mod 3)).
Then set atpB(b, b′) := atpA(a, fi(a)), and thus B |= βi(b, b′).

To complete the construction of B, let b1, b2 ∈ B be such that
atpB(b1, b2) is not yet specified. Choose a1, a2 ∈ A so that

atpA(a1) = atpB(b1) and

atpA(a2) = atpB(b2)

and set

atpB(b1, b2) := atpA(a1, a2).

Since A |= α(a1, a2), also B |= α(b1, b2).
For the previously considered example, B looks as follows:

C

K

P× {0} P× {1}

P× {2}

•

•

•

•

•

•

•
•

Overall, we obtain B |= ∀x∀yα ∧
n∧

i=1
∀x∃yβi = ψ, and the size of B
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is restricted by

|B| = |C|︸︷︷︸
≤|K|(n+1)

+ 3n|P| = O(n · # (atomic 1-types)) .

For k relation symbols, there are 2k atomic 1-types, hence |B| = 2O(|ψ|).
q.e.d.

This result implies that Sat(FO2) is in NEXPTIME (indeed it is
NEXPTIME-complete), since we can simply guess a finite structure
A of exponential size (in the length of ψ) and verify that A |= ψ.

Corollary 2.31. Sat(FO2) ∈ NEXPTIME = (
⋃
k

NTIME(2nk
)).

This is a typical complexity level for decidable fragments of FO.
In fact, Sat(FO2) is even complete for NEXPTIME. For showing this,
we reduce a bounded version of the domino problem to Sat(FO2).

Definition 2.32. Let D = (D, H, V) be a domino system and let Z(t)
denote Z/tZ×Z/tZ. For a word w = w0, . . . , wn−1 ∈ Dn we say that
D tiles Z(t) with initial condition w if there is τ : Z(t)→ D such that

• if τ(x, y) = d and τ(x + 1, y) = d′ then (d, d′) ∈ H
for all (x, y) ∈ Z(t) ,

• if τ(x, y) = d, τ(x, y + 1) = d′ then (d, d′) ∈ V
for all (x, y) ∈ Z(t) and

• τ(i, 0) = wi for all i = 0, . . . , n− 1.

Let D be a domino system and T : N→N a mapping. Define

DOMINO(D, T) := {w ∈ D∗ : D tiles Z(T(|w|)) with initial

condition w} .

As before we describe a computation of a (in this case non-
deterministic) Turing machine by a domino tiling in such a way that
the input condition of the domino problem relates to the initial configu-
ration of the Turing machine. The restrictions on the size of the tiled
rectangle correspond to the time and space restrictions of the Turing
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machine. To prove that a problem A is NEXPTIME-hard, it suffices to
show that DOMINO(D, 2n) ≤p A.

Our goal is to show that DOMINO(D, 2n) reduces to Sat(X) for
relatively simple classes X ⊆ FO. Set

X = {ϕ ∈ FO2 : ϕ = ∀x∀y α ∧ ∀x∃y β, s.t. α, β quantifier-free,

without =, and with only monadic predicates} .

We show that Sat(X) is NEXPTIME-complete and hence also
Sat(FO2) is NEXPTIME-complete.

Lemma 2.33. For each domino system D = (D, H, V) there exists a
polynomial time reduction w ∈ Dn 7→ ψw ∈ X such that D tiles Z(2n)

with initial condition w if and only if ψw is satisfiable.

Proof. The intended model of ψw is a description of a tiling τ : Z(2n)→
D in the universe Z(2n).

Let z = (a, b) ∈ Z(2n) with a =
n−1
∑

i=0
ai2i and b =

n−1
∑

i=0
bi2i. Encode

the tuple as (ao, . . . , an−1, b0, . . . , bn−1) ∈ {0, 1}2n.
To encode the tiling, we define ψw with the monadic predicates Xi,

X∗i , Yi, Y∗i , Ni for 0 ≤ i < n and Pd(d ∈ D) with the following intended
meaning:

Xiz iff ai = 1.

X∗i z iff aj = 1 for all j < i.

Yiz iff bj = 1.

Y∗i z iff bj = 1 for all j < i.

Niz iff z = (i, 0).

Pdz iff τ(z) = d.

ψw will have the form ψw = ∀x∀yα ∧ ∀x∃yβ, where β accounts
for the correct interpretation of Xi, X∗i , Yi, Y∗i , Ni and ensures that every
element has a successor, and α accounts for the description of a correct
tiling.
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Now β is the the following formula:

β = X∗0 x ∧Y∗0 x

∧
n−1∧

i=1
X∗i x ↔ (X∗i−1x ∧ Xi−1x)

∧
n−1∧

i=1
Y∗i x ↔ (Y∗i−1x ∧Yi−1x)

∧
n−1∧

i=0
Xiy↔ (Xix⊕ X∗i x)

∧
n−1∧

i=0
Yiy↔ (Yix⊕ (Y∗i x ∧ Xn−1x ∧ X∗n−1x))

∧ N0x ↔ (
n−1∧

i=0
¬Xix ∧ ¬Yix)

∧
n−1∧

i=0
Nix ↔ Ni+1y.

We define the following shorthands for use in α:

H(x, y) :=
n−1∧

i=0
(Yiy↔ Yix) ∧

n−1∧

i=0
(Xiy↔ (Xix⊕ X∗i x))

V(x, y) :=
n−1∧

i=0
(Xiy↔ Xix) ∧

n−1∧

i=0
(Yiy↔ (Yix⊕Y∗i x)).

Now α is defined to be

α =
∧

d ̸=d′
¬(Pdx ∧ Pd′x)

∧ (H(x, y)→
∨

(d,d′)∈H

(Pdx ∧ Pd′y))

∧ (V(x, y)→
∨

(d,d′)∈V

(Pdx ∧ Pd′y))

∧ (
n−1∧

i=i
(Nix → Pwi x)).
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Claim 2.34. ψw is satisfiable if and only if D tiles Z(2n) with initial
condition w.

Proof. We show both directions.

(⇐) Consider the intended model, ψw holds in it.
(⇒) Consider C = (C, X1, . . .) |= ψw and define a mapping

f : C → Z(2n)

c 7→ (a, b) ≡ (a0, . . . , an−1, b0, . . . , bn−1)

with ai = 1 iff C |= Xic and

bi = 1 iff C |= Yic.

As C |= ∀x∃yβ, f is surjective. Choose for each z ∈ Z(2n) an
element c ∈ f−1(z) and set τ(z) = d for the unique d that satisfies
C |= Pdc. Then τ is a correct tiling with initial condition w. q.e.d.

Since the length of ψw is |ψw| = O(n log n), the above claim com-
pletes the proof of the lemma. q.e.d.
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