Mathematische Grundlagen der Informatik
RWTH Aachen

Prof. Dr. E. Grädel, F. Abu Zaid, W. Pakusa

Algorithmic Model Theory - Assignment 10

Due: Monday, 9 January, 12:00

Exercise 1

Let $\mathcal{G}=\left(V,\left(E_{i}\right)_{1 \leq i \leq m},\left(P_{i}\right)_{1 \leq i \leq m}\right)$ be a transition system. In the lecture the following deflationary operator $F: \mathcal{P}\left(V^{2}\right) \rightarrow \mathcal{P}\left(V^{2}\right)$ (for defining a linear ordering on the bisimulation quotient of \mathcal{G}) was considered.

$$
\begin{aligned}
\preceq^{1}=F(V, V)= & \left\{(u, v): \mathcal{G} \models \bigwedge_{i \leq m} P_{i} u \rightarrow\left(P_{i} v \vee \bigvee\left(\neg P_{j} u \wedge P_{j} v\right)\right)\right\} \\
\preceq^{i}=F\left(\preceq^{i-1}\right)= & \left\{(u, v) \in \preceq^{i-1}:(v, u) \notin \preceq^{i-1}\right\} \cup \\
& \left\{(u, v) \in \preceq^{i-1}: \text { if there is a } \sim^{i-1} \text {-class separating } u \text { and } v\right. \text { then } \\
& \quad \text { for the minimal such class } C \text { it holds that } u E \cap C=\emptyset \text { and } v E \cap C \neq \emptyset\} .
\end{aligned}
$$

Recall that $v \sim^{i} w: \Leftrightarrow\left(v \preceq^{i} w\right.$ and $\left.w \preceq^{i} v\right)$.
(a) Show explicitly that \preceq^{i} defines a total preorder on $V \times V$ for all $i \geq 1$, i.e. show that \preceq^{i} is transitive and total. Conclude that the deflationary fixed point \preceq^{∞} is a linear ordering on the bisimulation quotient of \mathcal{G}.
(b) Give an analogous definition of \preceq^{∞} in terms of an inflationary rather than a deflationary fixed point induction and formulate your definition in IFP.
Hint: Define for the inflationary induction strict (and not necessarily total) preorders \prec^{i} such that \prec^{∞} is a (strict) linear order on the bisimulation quotient of \mathcal{G}.

Exercise 2

Let Σ be an alphabet. A language $L \subseteq \Sigma^{*}$ can be identified with a class of word structures $\mathcal{K}_{L}=\left\{\mathcal{W}_{x}: x \in L\right\}$ where

$$
\mathcal{W}_{x}=\left(\{0, \ldots,|x|-1\},\left(P_{a}=\{i: x(i)=a\}\right)_{a \in \Sigma},<\right)
$$

It is a well-known fact that L is regular, i.e. recognisable by a finite automaton $\mathcal{A}=\left(Q, \Sigma, q_{0}, \delta, F\right)$, if and only if \mathcal{K}_{L} is definable in MSO. Let LFP ${ }^{M}$ denote the fragment of LFP in which only monadic fixed point variables (but simultaneous fixed point definitions) are allowed.
(a) Prove, using the equivalence of MSO-definability and regularity of languages, that LFP ${ }^{M}$ and MSO have the same expressive power on the class of word structures.
(b) Prove or disprove, again using the equivalence of MSO-definability and regularity of languages, that the same holds for MSO and full LFP on the class of word structures.

Hint: For the following exercises you can use the inflationary stage comparison theorem for LFP which was presented in the lecture.

Exercise 3

Construct LFP-formulas which define in a rooted tree $\mathcal{T}=(V, E, r)$, where r denotes its root, the following relations.
(a) $R_{1}=\{(x, y)$: the subtrees rooted in x and y have the same height $\}$
(b) $R_{2}=\{(x, y)$: the nodes x and y are on the same level of the tree $\}$
(c) $R_{3}=\{x$: the subtree rooted in x possesses a perfect matching $\}$.

Exercise 4

A k edge coloured connected graph $\mathcal{G}=\left(V, E, C_{1}, \ldots, C_{k}\right)$ is a connected graph (V, E) which is extended by k binary predicates $C_{1}, \ldots, C_{k} \subseteq E$ that encode a valid k edge colouring of (V, E), i.e. the sets C_{1}, \ldots, C_{k} are pairwise disjoint, $\bigcup_{i=1}^{k} C_{i}=E$ and $\left|(\{v\} \times V) \cap C_{i}\right| \leq 1$ for all $v \in V$ and $1 \leq i \leq k$.
(a) Construct an LFP-formula $\varphi(p, x, y)$ such that for all $a \in V$ the relation defined by φ in \mathcal{G} with parameter a, i.e. the relation $\{(v, w): \mathcal{G} \models \varphi(a, v, w)\}$, is a linear order on V.

Hint: Use the colouring of the vertices to identify a spanning tree of \mathcal{G}.
(b) Conclude, using the Immerman-Vardi Theorem, that LFP captures PTIME on the class of connected k edge coloured graphs.

