Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, F. Abu Zaid, W. Pakusa

Algorithmic Model Theory — Assignment 10

Due: Monday, 9 January, 12:00

Exercise 1

Let $\mathcal{G} = (V, (E_i)_{1 \leq i \leq m}, (P_i)_{1 \leq i \leq m})$ be a transition system. In the lecture the following deflationary operator $F : \mathcal{P}(V^2) \to \mathcal{P}(V^2)$ (for defining a linear ordering on the bisimulation quotient of \mathcal{G}) was considered.

$$\leq^{1} = F(V,V) = \{(u,v) : \mathcal{G} \models \bigwedge_{i \leq m} P_{i}u \to (P_{i}v \lor \bigvee_{j < i} (\neg P_{j}u \land P_{j}v))\}$$

$$\leq^{i} = F(\leq^{i-1}) = \{(u,v) \in \leq^{i-1} : (v,u) \notin \leq^{i-1}\} \cup$$

$$\{(u,v) \in \leq^{i-1} : \text{if there is a } \sim^{i-1} \text{-class separating } u \text{ and } v \text{ then}$$

for the minimal such class C it holds that $uE \cap C = \emptyset$ and $vE \cap C \neq \emptyset\}.$

Recall that $v \sim^i w :\Leftrightarrow (v \preceq^i w \text{ and } w \preceq^i v)$.

- (a) Show explicitly that \preceq^i defines a total preorder on $V \times V$ for all $i \geq 1$, i.e. show that \preceq^i is transitive and total. Conclude that the deflationary fixed point \preceq^{∞} is a linear ordering on the bisimulation quotient of \mathcal{G} .
- (b) Give an analogous definition of \preceq^{∞} in terms of an inflationary rather than a deflationary fixed point induction and formulate your definition in IFP.

Hint: Define for the inflationary induction strict (and not necessarily total) preorders \prec^i such that \prec^{∞} is a (strict) linear order on the bisimulation quotient of \mathcal{G} .

Exercise 2

Let Σ be an alphabet. A language $L \subseteq \Sigma^*$ can be identified with a class of word structures $\mathcal{K}_L = \{\mathcal{W}_x : x \in L\}$ where

$$\mathcal{W}_x = (\{0, \dots, |x| - 1\}, (P_a = \{i : x(i) = a\})_{a \in \Sigma}, <).$$

It is a well-known fact that L is regular, i.e. recognisable by a finite automaton $\mathcal{A} = (Q, \Sigma, q_0, \delta, F)$, if and only if \mathcal{K}_L is definable in MSO. Let LFP^M denote the fragment of LFP in which only monadic fixed point variables (but simultaneous fixed point definitions) are allowed.

- (a) Prove, using the equivalence of MSO-definability and regularity of languages, that LFP^M and MSO have the same expressive power on the class of word structures.
- (b) Prove or disprove, again using the equivalence of MSO-definability and regularity of languages, that the same holds for MSO and full LFP on the class of word structures.

Hint: For the following exercises you can use the inflationary stage comparison theorem for LFP which was presented in the lecture.

Exercise 3

Construct LFP-formulas which define in a rooted tree $\mathcal{T} = (V, E, r)$, where r denotes its root, the following relations.

- (a) $R_1 = \{(x, y) : \text{the subtrees rooted in } x \text{ and } y \text{ have the same height} \}$
- (b) $R_2 = \{(x, y) : \text{the nodes } x \text{ and } y \text{ are on the same level of the tree} \}$
- (c) $R_3 = \{x : \text{the subtree rooted in } x \text{ possesses a perfect matching}\}.$

Exercise 4

A k edge coloured connected graph $\mathcal{G} = (V, E, C_1, \ldots, C_k)$ is a connected graph (V, E) which is extended by k binary predicates $C_1, \ldots, C_k \subseteq E$ that encode a valid k edge colouring of (V, E), i.e. the sets C_1, \ldots, C_k are pairwise disjoint, $\bigcup_{i=1}^k C_i = E$ and $|(\{v\} \times V) \cap C_i| \leq 1$ for all $v \in V$ and $1 \leq i \leq k$.

- (a) Construct an LFP-formula φ(p, x, y) such that for all a ∈ V the relation defined by φ in G with parameter a, i.e. the relation {(v, w) : G ⊨ φ(a, v, w)}, is a linear order on V. *Hint:* Use the colouring of the vertices to identify a spanning tree of G.
- (b) Conclude, using the Immerman-Vardi Theorem, that LFP captures PTIME on the class of connected k edge coloured graphs.