Algorithmic Model Theory — Assignment 8

Due: Monday, 12 December, 12:00

Exercise 1

Show that the syntax of LFP ensures operators used in fixed point definitions to be monotone. Let $\varphi(S, R, \bar{x})$ be a first-order formula over the signature $\tau \cup \{R, S\}$ such that R and S occur only positively (i.e. in the scope of an even number of negations) in φ and such that the length of \bar{x} matches the arity k of R. Show that for every τ -structure \mathfrak{A} the following holds.

- (a) For all $S \subseteq A^l$ the operator $F_{\varphi}^{\mathfrak{A},S} : \mathcal{P}(A^k) \to \mathcal{P}(A^k), R \mapsto \{\bar{a} \in A^k : \mathfrak{A} \models \varphi(S, R, \bar{a})\}$ is monotone.
- (b) The operator $G^{\mathfrak{A}}_{\varphi}: \mathcal{P}(A^l) \to \mathcal{P}(A^l), S \mapsto \{\bar{a} \in A^l : \bar{a} \in \mathbf{lfp}(F^{\mathfrak{A},S}_{\varphi})\}$ is monotone.

Exercise 2

Let $\mathcal{G} = (V, E, P)$ be a finite directed graph extended by a monadic predicate P. Describe the relations in \mathcal{G} that are defined by the following LFP-formulae.

- (a) $[\mathbf{gfp} Rx. (Px \land \exists y(Exy \land [\mathbf{lfp} Sx. (Rx \lor \exists y(Exy \land Sy))](y))](x)$
- (b) $[\mathbf{lfp} Uxy. (Exy \lor \exists z (Exz \land [\mathbf{lfp} Gxy. (\exists z (Exz \land Uzy))](z, y))](x, y)$

Exercise 3

We consider two monotone operators

$$F: \mathcal{P}(A) \times \mathcal{P}(B) \to \mathcal{P}(A)$$
$$G: \mathcal{P}(A) \times \mathcal{P}(B) \to \mathcal{P}(B),$$

and define the simulataneous operator of F and G by

$$H: \mathcal{P}(A) \times \mathcal{P}(B) \to \mathcal{P}(A) \times \mathcal{P}(B), H(X,Y) \mapsto (F(X), G(Y)).$$

This operator is monotone as well and we denote its least fixed point (where inclusion is considered component-wise) by $H^{\infty} = (F^{\infty}, G^{\infty})$. As in the case of a single operator, the fixed point H^{∞} can be constructed inductively starting with $H^0 = (\emptyset, \emptyset)$ and iterating H.

For $X \subseteq A$ we define the (monotone) operator $G_X : \mathcal{P}(B) \to \mathcal{P}(B), Y \mapsto G(X, Y)$. Furthermore, we let $E : \mathcal{P}(A) \to \mathcal{P}(A), X \mapsto F(X, \mathbf{lfp}(G_X))$. Prove that E is monotone and $\mathbf{lfp}(E) = F^{\infty}$.