Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, F. Abu Zaid, W. Pakusa

Algorithmic Model Theory — Assignment 5

Due: Monday, 21 November, 12:00

Exercise 1

Show that the class $[\exists^*\forall, (0), (1)]_{=}$ has the finite model property.

Hint: Consider the Skolem normal-form of such sentences φ , and try to prune a possibly infinite model of φ by considering equivalence relations between elements of the structure relating those elements that satisfy the same atomic formulae in one free variable in which the function is applied only a bounded number of times.

Exercise 2

- (a) Show, using the arguments from Exercise 2 of Assignment 1, that $Sat([\exists^*\forall^*, all, (0)]_{=}) \in NEXPTIME.$
- (b) Show that $\operatorname{Sat}([\exists^*\forall^*, all, (0)]_{=})$ is NEXPTIME-complete by proving the hardness via a reduction from $\operatorname{DOMINO}(\mathcal{D}, 2^n)$ to $\operatorname{Sat}([\exists^2\forall^*, all, (0)]_{=})$.

Hint: Use sentences of the form $\exists 0 \exists 1 \forall \overline{x} \forall \overline{y} \dots (0 \neq 1 \land \varphi)$ where tuples $\overline{x} = x_0 \dots x_{n-1}$ represent coordinates and φ describes a correct tiling using appropriate relations.

Exercise 3

- (a) Show that $\operatorname{Sat}([all, (m), (0)]_{=}) \in \operatorname{PSPACE}$ for every fixed $m \in \mathbb{N}$.
- (b) Show that Sat([all, (m), (0)]=) is PSPACE-complete. *Hint:* Reduce QBF (the set of all valid quantified boolean formulae) to Sat([all, (0), (0)]=) i.e. the first-order theory of equality.