Mathematische Grundlagen der Informatik
RWTH Aachen

Prof. Dr. E. Grädel, F. Abu Zaid, W. Pakusa

Algorithmic Model Theory - Assignment 2

Due: Monday, 31 October, 12:00

Exercise 1

Prove or disprove that the following pairs of decision problems are recursively inseparable.
(a) $\mathrm{A}=\left\{\rho(M)\right.$: there is no $w,|w| \leq 2^{|\rho(M)|}$ s.th. $\left.w \in L(M)\right\}$
$\mathrm{B}=\left\{\rho(M)\right.$: there is $w,|w| \leq 2^{|\rho(M)|}$ s.th. M halts on w within at most $2^{|\rho(M)|}$ steps $\}$.
(b) $\mathrm{EQ}=\left\{\rho(M) \sharp \rho\left(M^{\prime}\right): L(M)=L\left(M^{\prime}\right)\right\}$

$$
\mathrm{NEQ}=\left\{\rho(M) \sharp \rho\left(M^{\prime}\right):\left(L(M) \backslash L\left(M^{\prime}\right)\right) \cup\left(L\left(M^{\prime}\right) \backslash L(M)\right) \neq \emptyset\right\}
$$

Exercise 2

Prove or disprove that the following decision problems are recursively enumerable and/or co-recursively enumerable.
(a) EVEN-SAT $=\{\varphi \in \mathrm{FO}:$ all finite models of φ have even cardinality $\}$
(b) ALL-SHORT-EQV $=\{\varphi \in \mathrm{FO}:$ for all $\psi,|\psi| \leq|\varphi|$ it holds $\varphi \equiv \psi\}$
(c) ONE-SHORT-EQV $=\{\varphi \in \mathrm{FO}:$ there is $\psi,|\psi| \leq|\varphi|$ such that $\varphi \equiv \psi\}$.

Exercise 3*

Let Σ be a finite alphabet. A Thue process over Σ is a quotient of the semigroup $\left(\Sigma^{+}, \cdot\right)$. It is specified by a finite set of identities $I=\left\{\left(v_{1}, w_{1}\right), \ldots,\left(v_{k}, w_{k}\right)\right\} \subseteq\left(\Sigma^{+} \times \Sigma^{+}\right)$and defined as the quotient of $\left(\Sigma^{+}, \cdot\right)$ with respect to the smallest congruence relation \sim_{I} containing

$$
\left\{(x, y) \in \Sigma^{+} \times \Sigma^{+}: x=z_{1} v_{i} z_{2} \text { and } y=z_{1} w_{i} z_{2} \text { for some }\left(v_{i}, w_{i}\right) \in I \text { and } z_{1}, z_{2} \in \Sigma^{\star}\right\}
$$

The word problem for Thue processes over Σ is the following decision problem: Given a finite set of identities $I \subseteq \Sigma^{+} \times \Sigma^{+}$and two words $v, w \in \Sigma^{\star}$; decide whether $v \sim_{I} w$.
(a) Prove that the word problem for Thue processes is undecidable.
(b) Reduce the word problem for Thue processes to the validity problem for $\mathrm{FO}(\tau)$, where $\tau=\left\{a_{1}, \ldots, a_{n}, f\right\}$ and a_{1}, \ldots, a_{n} are constant symbols for the letters in Σ, and f is a binary function symbol.

Exercise 4

Prove that the set of relational first-order formulae without equality forms a reduction class.

