Algorithmic Model Theory — Assignment 2

Due: Monday, 31 October, 12:00

Exercise 1

Prove or disprove that the following pairs of decision problems are recursively inseparable.

(a) A = { $\rho(M)$: there is no $w, |w| \leq 2^{|\rho(M)|}$ s.th. $w \in L(M)$ } B = { $\rho(M)$: there is $w, |w| \leq 2^{|\rho(M)|}$ s.th. M halts on w within at most $2^{|\rho(M)|}$ steps}.

(b) EQ = {
$$\rho(M)$$
 \$ $\neq \rho(M')$: $L(M) = L(M')$ }
NEQ = { $\rho(M)$ \$ $\neq \rho(M')$: $(L(M) \setminus L(M')) \cup (L(M') \setminus L(M)) \neq \emptyset$ }.

Exercise 2

Prove or disprove that the following decision problems are recursively enumerable and/or co-recursively enumerable.

- (a) EVEN-SAT = { $\varphi \in FO$: all finite models of φ have even cardinality}
- (b) ALL-SHORT-EQV = { $\varphi \in FO$: for all $\psi, |\psi| \le |\varphi|$ it holds $\varphi \equiv \psi$ }
- (c) ONE-SHORT-EQV = { $\varphi \in FO$: there is $\psi, |\psi| \le |\varphi|$ such that $\varphi \equiv \psi$ }.

Exercise 3^*

Let Σ be a finite alphabet. A *Thue process over* Σ is a quotient of the semigroup (Σ^+, \cdot) . It is specified by a finite set of identities $I = \{(v_1, w_1), \ldots, (v_k, w_k)\} \subseteq (\Sigma^+ \times \Sigma^+)$ and defined as the quotient of (Σ^+, \cdot) with respect to the smallest congruence relation \sim_I containing

 $\{(x,y)\in\Sigma^+\times\Sigma^+: x=z_1v_iz_2 \text{ and } y=z_1w_iz_2 \text{ for some } (v_i,w_i)\in I \text{ and } z_1,z_2\in\Sigma^\star\}.$

The word problem for Thue processes over Σ is the following decision problem: Given a finite set of identities $I \subseteq \Sigma^+ \times \Sigma^+$ and two words $v, w \in \Sigma^*$; decide whether $v \sim_I w$.

- (a) Prove that the word problem for Thue processes is undecidable.
- (b) Reduce the word problem for Thue processes to the validity problem for FO(τ), where $\tau = \{a_1, \ldots, a_n, f\}$ and a_1, \ldots, a_n are constant symbols for the letters in Σ , and f is a binary function symbol.

Exercise 4

Prove that the set of relational first-order formulae without equality forms a reduction class.

http://logic.rwth-aachen.de/Teaching/AMT-WS12/