Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, F. Abu Zaid, W. Pakusa

Algorithmic Model Theory — Assignment 1

Due: Monday, 24 October, 12:00

- Note: You may work on the exercises in groups of up to three students.
 - Hand in your solutions at the end of the lecture or put them into the box at the institute.

Exercise 1

- (a) Show that any two disjoint co-recursively enumerable languages A and B are recursively separable, i.e. there exists a recursive set C such that $A \subseteq C$ and $B \cap C = \emptyset$.
- (b) Given a recursively enumerable language L, let code $L = \{\rho(M) : L(M) = L\}$. Show that if L_1 and L_2 are recursively enumerable languages and $L_1 \subsetneq L_2$, then code L_1 is recursively inseparable from code L_2 .

Hint: Use a reduction from a suitable pair of recursively inseparable sets and recall the proof of Rice's theorem.

Exercise 2

Let X be the set of relational FO-sentences of the form $\exists x_1 \dots \exists x_r \forall y_1 \dots \forall y_s \varphi$ where $r, s \in \mathbb{N}$ and φ is quantifier-free. Show that Sat(X) is decidable.

Hint: Show that each satisfiable sentence in X has a model with at most r elements.